• Medicine · Sep 2023

    Molecular basis of breast cancer with comorbid depression and the mechanistic insights of Xiaoyaosan in treating breast cancer-associated depression.

    • Gang Chen.
    • Department of Breast Surgery, Hangzhou Fuyang Women and Children Hospital, Hangzhou, China.
    • Medicine (Baltimore). 2023 Sep 22; 102 (38): e35157e35157.

    AbstractDepression and breast cancer (BC) have been found to have a shared genetic basis, multiple loci of effect, and a presumed causal relationship. The treatment of BC combined with depression poses significant challenges. This study aims to use bioinformatics and network pharmacology to explore the molecular basis of BC combined with depression and to elucidate the potential mechanisms of Xiaoyaosan (XYS) in treating this disease. The molecular background of BC complicated with depression was discovered via data mining and bioinformatics. The molecular mechanism of XYS in the treatment of BC with depression was investigated by network pharmacology. The binding affinity between targets and active compounds was evaluated by molecular docking. The impact of XYS on the gene and protein expression of matrix metallopeptidase 9 (MMP9) in microglial cells was assessed using RT-quantitative PCR and western blot analysis, respectively. Differential expression analysis was conducted to identify genes associated with BC, revealing that 2958 genes were involved, with 277 of these genes also being related to depression. XYS was found to contain 173 active compounds and 342 targets, with 44 of these targets being involved in regulating the progression of BC and depression. Enrichment analysis was performed to identify pathways associated with these targets, revealing that they were related to cell proliferation, catalytic activity, cell communication, and interleukin-18 signaling and LXR/RXR activation. Network analysis was conducted to identify key targets of Xiaoyaosan in treating BC combined with depression, with EGF, interleukin 6, epidermal growth factor receptor, and peroxisome proliferator activated receptor gamma being identified as important targets. Molecular docking was also performed to assess the binding affinity between key targets and active compounds, with puerarin showing the strongest affinity for MMP9. In microglial cells, XYS significantly enhances the gene and protein expression of MMP9. This study elucidated the pharmacological mechanism of co-treatment for BC patients complicated with depression and the pharmacological mechanism of XYS against BC plus depression.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.