• BMC anesthesiology · Sep 2023

    Prediction of episode of hemodynamic instability using an electrocardiogram based analytic: a retrospective cohort study.

    • Bryce Benson, Ashwin Belle, Sooin Lee, Benjamin S Bassin, Richard P Medlin, Michael W Sjoding, and Kevin R Ward.
    • Fifth Eye Inc, 110 Miller Avenue, Suite 300, Ann Arbor, MI, 48104, USA.
    • BMC Anesthesiol. 2023 Sep 22; 23 (1): 324324.

    BackgroundPredicting the onset of hemodynamic instability before it occurs remains a sought-after goal in acute and critical care medicine. Technologies that allow for this may assist clinicians in preventing episodes of hemodynamic instability (EHI). We tested a novel noninvasive technology, the Analytic for Hemodynamic Instability-Predictive Indicator (AHI-PI), which analyzes a single lead of electrocardiogram (ECG) and extracts heart rate variability and morphologic waveform features to predict an EHI prior to its occurrence.MethodsRetrospective cohort study at a quaternary care academic health system using data from hospitalized adult patients between August 2019 and April 2020 undergoing continuous ECG monitoring with intermittent noninvasive blood pressure (NIBP) or with continuous intraarterial pressure (IAP) monitoring.ResultsAHI-PI's low and high-risk indications were compared with the presence of EHI in the future as indicated by vital signs (heart rate > 100 beats/min with a systolic blood pressure < 90 mmHg or a mean arterial blood pressure of < 70 mmHg). 4,633 patients were analyzed (3,961 undergoing NIBP monitoring, 672 with continuous IAP monitoring). 692 patients had an EHI (380 undergoing NIBP, 312 undergoing IAP). For IAP patients, the sensitivity and specificity of AHI-PI to predict EHI was 89.7% and 78.3% with a positive and negative predictive value of 33.7% and 98.4% respectively. For NIBP patients, AHI-PI had a sensitivity and specificity of 86.3% and 80.5% with a positive and negative predictive value of 11.7% and 99.5% respectively. Both groups performed with an AUC of 0.87. AHI-PI predicted EHI in both groups with a median lead time of 1.1 h (average lead time of 3.7 h for IAP group, 2.9 h for NIBP group).ConclusionsAHI-PI predicted EHIs with high sensitivity and specificity and within clinically significant time windows that may allow for intervention. Performance was similar in patients undergoing NIBP and IAP monitoring.© 2023. BioMed Central Ltd., part of Springer Nature.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.