• Emerg Med J · Feb 2024

    Triage in major incidents: development and external validation of novel machine learning-derived primary and secondary triage tools.

    • Yuanwei Xu, Nabeela Malik, Saisakul Chernbumroong, James Vassallo, Damian Keene, Mark Foster, Janet Lord, Antonio Belli, Timothy Hodgetts, Douglas Bowley, and George Gkoutos.
    • Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
    • Emerg Med J. 2024 Feb 20; 41 (3): 176183176-183.

    BackgroundMajor incidents (MIs) are an important cause of death and disability. Triage tools are crucial to identifying priority 1 (P1) patients-those needing time-critical, life-saving interventions. Existing expert opinion-derived tools have limited evidence supporting their use. This study employs machine learning (ML) to develop and validate models for novel primary and secondary triage tools.MethodsAdults (16+ years) from the UK Trauma Audit and Research Network (TARN) registry (January 2008-December 2017) served as surrogates for MI victims, with P1 patients identified using predefined criteria. The TARN database was split chronologically into model training and testing (70:30) datasets. Input variables included physiological parameters, age, mechanism and anatomical location of injury. Random forest, extreme gradient boosted tree, logistic regression and decision tree models were trained to predict P1 status, and compared with existing tools (Battlefield Casualty Drills (BCD) Triage Sieve, CareFlight, Modified Physiological Triage Tool, MPTT-24, MSTART, National Ambulance Resilience Unit Triage Sieve and RAMP). Primary and secondary candidate models were selected; the latter was externally validated on patients from the UK military's Joint Theatre Trauma Registry (JTTR).ResultsModels were internally tested in 57 979 TARN patients. The best existing tool was the BCD Triage Sieve (sensitivity 68.2%, area under the receiver operating curve (AUC) 0.688). Inability to breathe spontaneously, presence of chest injury and mental status were most predictive of P1 status. A decision tree model including these three variables exhibited the best test characteristics (sensitivity 73.0%, AUC 0.782), forming the candidate primary tool. The proposed secondary tool (sensitivity 77.9%, AUC 0.817), applicable via a portable device, includes a fourth variable (injury mechanism). This performed favourably on external validation (sensitivity of 97.6%, AUC 0.778) in 5956 JTTR patients.ConclusionNovel triage tools developed using ML outperform existing tools in a nationally representative trauma population. The proposed primary tool requires external validation prior to consideration for practical use. The secondary tool demonstrates good external validity and may be used to support decision-making by healthcare workers responding to MIs.© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…