• Clinics · Sep 2018

    Review

    Human papillomavirus and genome instability: from productive infection to cancer.

    • Bruna Prati, Bruna Marangoni, and Enrique Boccardo.
    • Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR.
    • Clinics (Sao Paulo). 2018 Sep 6; 73 (suppl 1): e539se539s.

    AbstractInfection with high oncogenic risk human papillomavirus types is the etiological factor of cervical cancer and a major cause of other epithelial malignancies, including vulvar, vaginal, anal, penile and head and neck carcinomas. These agents affect epithelial homeostasis through the expression of specific proteins that deregulate important cellular signaling pathways to achieve efficient viral replication. Among the major targets of viral proteins are components of the DNA damage detection and repair machinery. The activation of many of these cellular factors is critical to process viral genome replication intermediates and, consequently, to sustain faithful viral progeny production. In addition to the important role of cellular DNA repair machinery in the infective human papillomavirus cycle, alterations in the expression and activity of many of its components are observed in human papillomavirus-related tumors. Several studies from different laboratories have reported the impact of the expression of human papillomavirus oncogenes, mainly E6 and E7, on proteins in almost all the main cellular DNA repair mechanisms. This has direct consequences on cellular transformation since it causes the accumulation of point mutations, insertions and deletions of short nucleotide stretches, as well as numerical and structural chromosomal alterations characteristic of tumor cells. On the other hand, it is clear that human papillomavirus-transformed cells depend on the preservation of a basal cellular DNA repair activity level to maintain tumor cell viability. In this review, we summarize the data concerning the effect of human papillomavirus infection on DNA repair mechanisms. In addition, we discuss the potential of exploiting human papillomavirus-transformed cell dependency on DNA repair pathways as effective antitumoral therapies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.