• Emerg Med Australas · Feb 2024

    Machine learning in clinical practice: Evaluation of an artificial intelligence tool after implementation.

    • Hamed Akhlaghi, Sam Freeman, Cynthia Vari, Bede McKenna, George Braitberg, Jonathan Karro, and Bahman Tahayori.
    • Department of Emergency Medicine, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia.
    • Emerg Med Australas. 2024 Feb 1; 36 (1): 118124118-124.

    ObjectiveArtificial intelligence (AI) has gradually found its way into healthcare, and its future integration into clinical practice is inevitable. In the present study, we evaluate the accuracy of a novel AI algorithm designed to predict admission based on a triage note after clinical implementation. This is the first of such studies to investigate real-time AI performance in the emergency setting.MethodsThe novel AI algorithm that predicts admission using a triage note was translated into clinical practice and integrated within St Vincent's Hospital Melbourne's electronic emergency patient management system. The data were collected from 1 January 2021 to 17 August 2022 to evaluate the diagnostic accuracy of the AI system after implementation.ResultsA total of 77 125 ED presentations were included. The live AI algorithm has a sensitivity of 73.1% (95% confidence interval 72.5-73.8), specificity of 74.3% (73.9-74.7), positive predictive value of 50% (49.6-50.4) and negative predictive value of 88.7% (88.5-89) with a total accuracy of 74% (73.7-74.3). The accuracy of the system was at the lowest for admission to psychiatric units (34%) and at the highest for gastroenterology and medical admission (84% and 80%, respectively).ConclusionOur study showed the diagnostic evaluation of a real-time AI clinical decision-support tool became less accurate than the original. Although real-time sensitivity and specificity of the AI tool was still acceptable as a decision-support tool in the ED, we propose that continuous training and evaluation of AI-enabled clinical support tools in healthcare are conducted to ensure consistent accuracy and performance to prevent inadvertent consequences.© 2023 The Authors. Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…