-
- Dong Hyun Choi, Ki Jeong Hong, Do ShinSangSDepartment of Emergency Medicine, Seoul National University Hospital, Seoul, South Korea; Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea; Department of Emergency M, Sungwan Kim, Minhwa Chung, Ki Hong Kim, Kyoung Jun Song, Minwoo Cho, Dan Yoon, and Jooyoung Lee.
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, South Korea; Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea.
- Am J Emerg Med. 2023 Dec 1; 74: 112118112-118.
ObjectiveTo develop an alert/verbal/painful/unresponsive (AVPU) scale assessment system based on automated video and speech recognition technology (AVPU-AVSR) that can automatically assess a patient's level of consciousness and evaluate its performance through clinical simulation.MethodsWe developed an AVPU-AVSR system with a whole-body camera, face camera, and microphone. The AVPU-AVSR system automatically extracted essential audiovisual features to assess the AVPU score from the recorded video files. Arm movement, pain stimulus, and eyes-open state were extracted using a rule-based approach using landmarks estimated from pre-trained pose and face estimation models. Verbal stimuli were extracted using a pre-trained speech-recognition model. Simulations of a physician examining the consciousness of 12 simulated patients for 16 simulation scenarios (4 for each of "Alert", "Verbal", "Painful", and "Unresponsive") were conducted under the AVPU-AVSR system. The accuracy, sensitivity, and specificity of the AVPU-AVSR system were assessed.ResultsA total of 192 cases with 12 simulated patients were assessed using the AVPU-AVSR system with a multi-class accuracy of 0.95 (95% confidence interval [CI] (0.92-0.98). The sensitivity and specificity (95% CIs) for detecting impaired consciousness were 1.00 (0.97-1.00) and 0.88 (0.75-0.95), respectively. The sensitivity and specificity of each extracted feature ranged from 0.88 to 1.00 and 0.98 to 1.00.ConclusionsThe AVPU-AVSR system showed good accuracy in assessing consciousness levels in a clinical simulation and has the potential to be implemented in clinical practice to automatically assess mental status.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.