• Pain · Mar 2024

    Functional and anatomical analyses of active spinal circuits in a mouse model of chronic pain.

    • Katarzyna M Targowska-Duda, Darian Peters, Jason L Marcus, Gilles Zribi, Lawrence Toll, and Akihiko Ozawa.
    • Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States.
    • Pain. 2024 Mar 1; 165 (3): 685697685-697.

    AbstractDecades of efforts in elucidating pain mechanisms, including pharmacological, neuroanatomical, and physiological studies have provided insights into how nociceptive information transmits from the periphery to the brain and the locations receiving nociceptive signals. However, little is known about which specific stimulus-dependent activated neurons, amongst heterogeneous neural environments, discriminatively evoke the cognate pain behavior. We here shed light on the population of neurons in the spinal cord activated by a painful stimulus to identify chronic pain-dependent activated neuronal subsets using Fos2A-iCreER (TRAP2) mice. We have found a large number of neurons activated by a normally nonpainful stimulus in the spinal cord of spinal nerve-ligated mice, compared with sham. Neuronal activation was observed in laminae I and II outer under heat hyperalgesia. A large number of neurons in laminae II inner were activated in both mechanical allodynia and heat hyperalgesia conditions, while mechanical allodynia tends to be the only stimulus that activates cells at lamina II inner dorsal region. Neuroanatomical analyses using spinal cell markers identified a large number of spinal inhibitory neurons that are recruited by both mechanical allodynia and heat hyperalgesia. Of interest, spinal neurons expressing calretinin, calbindin, and parvalbumin were activated differently with distinct pain modalities (ie, mechanical allodynia vs heat hyperalgesia). Chemogenetic inhibition of those activated neurons significantly and specifically reduced the response to the pain stimulus associated with the stimulus modality originally given to the animals. These findings support the idea that spinal neuronal ensembles underlying nociceptive transmission undergo dynamic changes to regulate selective pain responses.Copyright © 2023 International Association for the Study of Pain.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.