• Annals of medicine · Jan 2023

    Incorporating intraoperative blood pressure time-series variables to assist in prediction of acute kidney injury after type a acute aortic dissection repair: an interpretable machine learning model.

    • Anran Dai, Zhou Zhou, Fan Jiang, Yaoyi Guo, Dorothy O Asante, Yue Feng, Kaizong Huang, Chen Chen, Hongwei Shi, Yanna Si, and Jianjun Zou.
    • School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
    • Ann. Med. 2023 Jan 1; 55 (2): 22664582266458.

    BackgroundAcute kidney injury (AKI) is a common and serious complication after the repair of Type A acute aortic dissection (TA-AAD). However, previous models have failed to account for the impact of blood pressure fluctuations on predictive performance. This study aims to develop machine learning (ML) models combined with intraoperative medicine and blood pressure time-series data to improve the accuracy of early prediction for postoperative AKI risk.MethodsIndicators reflecting the duration and depth of hypotension were obtained by analyzing continuous mean arterial pressure (MAP) monitored intraoperatively with multiple thresholds (<65, 60, 55, 50) set in the study. The predictive features were selected by logistic regression and the least absolute shrinkage and selection operator (LASSO), and 4 ML models were built based on the above features. The performance of the models was evaluated by area under receiver operating characteristic curve (AUROC), calibration curve and decision curve analysis (DCA). Shapley additive interpretation (SHAP) was used to explain the prediction models.ResultsAmong the indicators reflecting intraoperative hypotension, 65 mmHg showed a statistically superior difference to other thresholds in patients with or without AKI (p < .001). Among 4 models, the extreme gradient boosting (XGBoost) model demonstrated the highest AUROC: 0.800 (95% 0.683-0.917) and sensitivity: 0.717 in the testing set and was verified the best-performing model. The SHAP summary plot indicated that intraoperative urine output, cumulative time of mean arterial pressure lower than 65 mmHg outside cardiopulmonary bypass (OUT_CPB_MAP_65 time), autologous blood transfusion, and smoking were the top 4 features that contributed to the prediction model.ConclusionWith the introduction of intraoperative blood pressure time-series variables, we have developed an interpretable XGBoost model that successfully achieve high accuracy in predicting the risk of AKI after TA-AAD repair, which might aid in the perioperative management of high-risk patients, particularly for intraoperative hemodynamic regulation.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.