• Cochrane Db Syst Rev · Oct 2023

    Review

    Cerebrolysin for acute ischaemic stroke.

    • Liliya Eugenevna Ziganshina, Tatyana Abakumova, Dilyara Nurkhametova, and Kristina Ivanchenko.
    • Centre for Knowledge Translation, Federal State Budgetary Educational Institution of Continuing Professional Education "Russian Medical Academy of Continuing Professional Education", The Ministry of Health of the Russian Federation (RMANPO), Moscow, Russian Federation.
    • Cochrane Db Syst Rev. 2023 Oct 11; 10 (10): CD007026CD007026.

    BackgroundCerebrolysin is a mixture of low-molecular-weight peptides and amino acids derived from porcine brain, which has potential neuroprotective properties. It is widely used in the treatment of acute ischaemic stroke in Russia, Eastern Europe, China, and other Asian and post-Soviet countries. This is an update of a review first published in 2010 and last updated in 2020.ObjectivesTo assess the benefits and harms of Cerebrolysin or Cerebrolysin-like agents for treating acute ischaemic stroke.Search MethodsWe searched the Cochrane Stroke Trials Register, CENTRAL, MEDLINE, Embase, Web of Science Core Collection, with Science Citation Index, and LILACS in May 2022 and a number of Russian databases in June 2022. We also searched reference lists, ongoing trials registers, and conference proceedings.Selection CriteriaRandomised controlled trials (RCTs) comparing Cerebrolysin or Cerebrolysin-like agents started within 48 hours of stroke onset and continued for any length of time, with placebo or no treatment in people with acute ischaemic stroke.Data Collection And AnalysisThree review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, extracted data, and applied GRADE criteria to the evidence.Main ResultsSeven RCTs (1773 participants) met the inclusion criteria of the review. In this update we added one RCT of Cerebrolysin-like agent Cortexin, which contributed 272 participants. We used the same approach for risk of bias assessment that was re-evaluated for the previous update: we added consideration of the public availability of study protocols and reported outcomes to the selective outcome reporting judgement, through identification, examination, and evaluation of study protocols. For the Cerebrolysin studies, we judged the risk of bias for selective outcome reporting to be unclear across all studies; for blinding of participants and personnel to be low in three studies and unclear in the remaining four; and for blinding of outcome assessors to be low in three studies and unclear in four studies. We judged the risk of bias for generation of allocation sequence to be low in one study and unclear in the remaining six studies; for allocation concealment to be low in one study and unclear in six studies; and for incomplete outcome data to be low in three studies and high in the remaining four studies. The manufacturer of Cerebrolysin supported three multicentre studies, either totally, or by providing Cerebrolysin and placebo, randomisation codes, research grants, or statisticians. We judged two studies to be at high risk of other bias and the remaining five studies to be at unclear risk of other bias. We judged the study of Cortexin to be at low risk of bias for incomplete outcome data and at unclear risk of bias for all other domains. All-cause death: Cerebrolysin or Cortexin probably result in little to no difference in all-cause death (risk ratio (RR) 0.96, 95% confidence interval (CI) 0.65 to 1.41; 6 trials, 1689 participants; moderate-certainty evidence). None of the included studies reported on poor functional outcome, defined as death or dependence at the end of the follow-up period, early death (within two weeks of stroke onset), quality of life, or time to restoration of capacity for work. Only one study clearly reported on the cause of death: cerebral infarct (four in the Cerebrolysin and two in the placebo group), heart failure (two in the Cerebrolysin and one in the placebo group), pulmonary embolism (two in the placebo group), and pneumonia (one in the placebo group). Non-death attrition (secondary outcome): Cerebrolysin or similar peptide mixtures may result in little to no difference in non-death attrition, but the evidence is very uncertain, with a considerable level of heterogeneity (RR 0.72, 95% CI 0.38 to 1.39; 6 trials, 1689 participants; very low-certainty evidence). Serious adverse events (SAEs): Cerebrolysin probably results in little to no difference in the total number of people with SAEs (RR 1.16, 95% CI 0.81 to 1.66; 3 trials, 1335 participants; moderate-certainty evidence). This comprised fatal SAEs (RR 0.90, 95% CI 0.59 to 1.38; 3 trials, 1335 participants; moderate-certainty evidence) and an increase in the total number of people with non-fatal SAEs (RR 2.39, 95% CI 1.10 to 5.23; 3 trials, 1335 participants; moderate-certainty evidence). In the subgroup of dosing schedule 30 mL for 10 days (cumulative dose 300 mL), the increase was more prominent (RR 2.87, 95% CI 1.24 to 6.69; 2 trials, 1189 participants). Total number of people with adverse events: Cerebrolysin or similar peptide mixtures may result in little to no difference in the total number of people with adverse events (RR 1.03, 95% CI 0.92 to 1.14; 4 trials, 1607 participants; low-certainty evidence).Authors' ConclusionsModerate-certainty evidence indicates that Cerebrolysin or Cerebrolysin-like peptide mixtures derived from cattle brain probably have no beneficial effect on preventing all-cause death in acute ischaemic stroke. Moderate-certainty evidence suggests that Cerebrolysin probably has no beneficial effect on the total number of people with serious adverse events. Moderate-certainty evidence also indicates a potential increase in non-fatal serious adverse events with Cerebrolysin use.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…