• Burns · Feb 2024

    In vivo monitoring of hemoglobin derivatives in a rat thermal injury model using spectral diffuse reflectance imaging.

    • Md Anowar Parvez, Kazuhiro Yashiro, Yasuyuki Tsunoi, Daizoh Saitoh, Shunichi Sato, and Izumi Nishidate.
    • Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei-shi, Tokyo 1848588 Japan.
    • Burns. 2024 Feb 1; 50 (1): 167177167-177.

    IntroductionTo demonstrate the feasibility of our previously proposed Diffuse reflectance spectral imaging (DRSI) method for in vivo monitoring of oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, tissue oxygen saturation, and methemoglobin saturation in a rat scald burn wound model and assess whether the method could be used for differentiating the burn depth groups in rats based on the hemoglobin parameters.MethodologySuperficial dermal burns (SDBs), deep dermal burns (DDBs), and deep burns (DBs) were induced in rat dorsal skin using a Walker-Mason method. An approach based on multiple regression analysis for spectral diffuse reflectance images aided by Monte Carlo simulations for light transport was used to quantify the hemoglobin parameters. Canonical discriminant analysis (CDA) was performed to discriminate SDB, DDB, and DB.ResultsCDA using the total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as the independent variables showed good performance for discriminating the SDB, DDB, and DB groups immediately after burn injury and the SDB group from the DDB and DB groups 24-72 h after burn injury.ConclusionsThe DRSI method with multiple regression analysis for quantification of oxygenated hemoglobin, deoxygenated hemoglobin, and methemoglobin proved to be reliable for monitoring these hemoglobin derivatives in the rat experimental burn injury model. The parameters of tissue oxygen saturation, methemoglobin saturation, and total hemoglobin concentration are promising for the differentiating the degree of burn injury using CDA.Copyright © 2023 Elsevier Ltd and International Society of Burns Injuries. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…