-
- Shuai Yu, Jason Dwight, Robert C Siska, Heather Burkart, Peiran Quan, Faliu Yi, Shimeng Du, Yahya Daoud, Kevin Plant, Anthony Criscitiello, Joseph Molnar, and Jeffrey E Thatcher.
- Spectral MD, Inc., Dallas, TX, USA.
- Burns. 2024 Feb 1; 50 (1): 115122115-122.
BackgroundExposing a healthy wound bed for skin grafting is an important step during burn surgery to ensure graft take and maintain good functional outcomes. Currently, the removal of non-viable tissue in the burn wound bed during excision is determined by expert clinician judgment. Using a porcine model of tangential burn excision, we investigated the effectiveness of an intraoperative multispectral imaging device combined with artificial intelligence to aid clinician judgment for the excision of non-viable tissue.MethodsMultispectral imaging data was obtained from serial tangential excisions of thermal burn injuries and used to train a deep learning algorithm to identify the presence and location of non-viable tissue in the wound bed. Following algorithm development, we studied the ability of two surgeons to estimate wound bed viability, both unaided and aided by the imaging device.ResultsThe deep learning algorithm was 87% accurate in identifying the viability of a burn wound bed. When paired with the surgeons, this device significantly improved their abilities to determine the viability of the wound bed by 25% (p = 0.03). Each time a surgeon changed their decision after seeing the AI model output, it was always a change from an incorrect decision to excise more tissue to a correct decision to stop excision.ConclusionThis study provides insight into the feasibility of image-guided burn excision, its effect on surgeon decision making, and suggests further investigation of a real-time imaging system for burn surgery could reduce over-excision of burn wounds.Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.