• J. Intern. Med. · Jan 2012

    Comparative Study

    Gene expression alterations at baseline and following moderate exercise in patients with Chronic Fatigue Syndrome and Fibromyalgia Syndrome.

    • A R Light, L Bateman, D Jo, R W Hughen, T A Vanhaitsma, A T White, and K C Light.
    • Department of Anesthesiology The Brain Institute Department of Neurobiology and Anatomy Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT 84132, USA. alan.light@hsc.utah.edu
    • J. Intern. Med. 2012 Jan 1;271(1):64-81.

    ObjectivesTo determine mRNA expression differences in genes involved in signalling and modulating sensory fatigue, and muscle pain in patients with chronic fatigue syndrome (CFS) and fibromyalgia syndrome (FM) at baseline, and following moderate exercise.DesignForty-eight patients with CFS only, or CFS with comorbid FM, 18 patients with FM that did not meet criteria for CFS, and 49 healthy controls underwent moderate exercise (25 min at 70% maximum age-predicted heart rate). Visual-analogue measures of fatigue and pain were taken before, during and after exercise. Blood samples were taken before and 0.5, 8, 24 and 48 h after exercise. Leucocytes were immediately isolated from blood, number coded for blind processing and analyses and flash frozen. Using real-time, quantitative PCR, the amount of mRNA for 13 genes (relative to control genes) involved in sensory, adrenergic and immune functions was compared between groups at baseline and following exercise. Changes in amounts of mRNA were correlated with behavioural measures and functional clinical assessments.ResultsNo gene expression changes occurred following exercise in controls. In 71% of patients with CFS, moderate exercise increased most sensory and adrenergic receptor's and one cytokine gene's transcription for 48 h. These postexercise increases correlated with behavioural measures of fatigue and pain. In contrast, for the other 29% of patients with CFS, adrenergic α-2A receptor's transcription was decreased at all time-points after exercise; other genes were not altered. History of orthostatic intolerance was significantly more common in the α-2A decrease subgroup. FM-only patients showed no postexercise alterations in gene expression, but their pre-exercise baseline mRNA for two sensory ion channels and one cytokine were significantly higher than controls.Conclusions  At least two subgroups of patients with CFS can be identified by gene expression changes following exercise. The larger subgroup showed increases in mRNA for sensory and adrenergic receptors and a cytokine. The smaller subgroup contained most of the patients with CFS with orthostatic intolerance, showed no postexercise increases in any gene and was defined by decreases in mRNA for α-2A. FM-only patients can be identified by baseline increases in three genes. Postexercise increases for four genes meet published criteria as an objective biomarker for CFS and could be useful in guiding treatment selection for different subgroups.© 2011 The Association for the Publication of the Journal of Internal Medicine.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.