-
Comparative Study
Effects of descending positive end-expiratory pressure on lung mechanics and aeration in healthy anaesthetized piglets.
- Alysson R S Carvalho, Frederico C Jandre, Alexandre V Pino, Fernando A Bozza, Jorge I Salluh, Rosana Rodrigues, Joao H N Soares, and Antonio Giannella-Neto.
- Biomedical Engineering Program, COPPE, Federal University of Rio de Janeiro, RJ, Brazil. roncally@peb.ufrj.br
- Crit Care. 2006 Jan 1;10(4):R122.
IntroductionAtelectasis and distal airway closure are common clinical entities of general anaesthesia. These two phenomena are expected to reduce the ventilation of dependent lung regions and represent major causes of arterial oxygenation impairment in anaesthetic conditions. In the present study, the behavior of the elastance of the respiratory system (Ers), as well as the lung aeration assessed by CT-scan, was evaluated during a descendent positive end-expiratory pressure (PEEP) titration. This work sought to evaluate the potential usefulness of the Ers monitoring to set the PEEP in order to prevent tidal recruitment and hyperinflation of healthy lungs under general anaesthesia.MethodsPEEP titration (from 16 to 0 cmH2O, with a tidal volume of 8 ml/kg) was performed, and at each PEEP, helical CT-scans were obtained during end-expiratory and end-inspiratory pauses in six healthy, anaesthetized and paralyzed piglets. The distribution of lung compartments (hyperinflated (HA), normally- (NA), poorly- (PA), and non-aerated areas (N)) was determined and the tidal re-aeration was calculated as the difference between end-expiratory and end-inspiratory PA and NA areas. Similarly, the tidal hyperinflation was obtained as the difference between end-inspiratory and end-expiratory HA. The Ers was estimated on a breath-by-breath basis from the equation of motion of the respiratory system during all PEEP titration with the least squares method.ResultsHA decreased throughout PEEP descent from PEEP 16 cmH2O to ZEEP (ranges from 24-62% to 1-7% at end-expiratory and from 44-73% to 4-17% at end-inspiratory pauses) whereas NA areas increased (30-66% to 72-83% at end-expiratory and from 19-48% to 73-77% at end-inspiratory pauses). From 16 to 8 cmH2O, Ers decreased with a correspondent reduction in tidal hyperinflation. A flat minimum of Ers was observed from 8 to 4 cmH2O. For PEEP below 4 cmH2O, Ers increased associated with a rise in tidal re-aeration and a flat maximum of the NA areas.ConclusionIn healthy piglets under a descending PEEP protocol, the PEEP at minimum Ers presented a compromise between maximizing NA areas and minimizing tidal re-aeration and hyperinflation. High levels of PEEP, greater than 8 cmH2O, reduced tidal re-aeration but enlarged hyperinflation with a concomitant decrease in normally aerated areas.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.