-
- Jinbin Tian, Alexis G Bavencoffe, Michael X Zhu, and Edgar T Walters.
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.
- Pain. 2024 Apr 1; 165 (4): 893907893-907.
AbstractNociceptor cell bodies generate "spontaneous" discharge that can promote ongoing pain in persistent pain conditions. Little is known about the underlying mechanisms. Recordings from nociceptor cell bodies (somata) dissociated from rodent and human dorsal root ganglia have shown that previous pain in vivo is associated with low-frequency discharge controlled by irregular depolarizing spontaneous fluctuations of membrane potential (DSFs), likely produced by transient inward currents across the somal input resistance. Using mouse nociceptors, we show that DSFs are associated with high somal input resistance over a wide range of membrane potentials, including depolarized levels where DSFs approach action potential (AP) threshold. Input resistance and both the amplitude and frequency of DSFs were increased in neurons exhibiting spontaneous activity. Ion substitution experiments indicated that the depolarizing phase of DSFs is generated by spontaneous opening of channels permeable to Na + or Ca 2+ and that Ca 2+ -permeable channels are especially important for larger DSFs. Partial reduction of the amplitude or frequency of DSFs by perfusion of pharmacological inhibitors indicated small but significant contributions from Nav1.7, Nav1.8, TRPV1, TRPA1, TRPM4, and N-type Ca 2+ channels. Less specific blockers suggested a contribution from NALCN channels, and global knockout suggested a role for Nav1.9. The combination of high somal input resistance plus background activity of diverse ion channels permeable to Na + or Ca 2+ produces DSFs that are poised to reach AP threshold if resting membrane potential depolarizes, AP threshold decreases, or DSFs become enhanced-all of which can occur under painful neuropathic and inflammatory conditions.Copyright © 2023 International Association for the Study of Pain.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.