You need to sign in or sign up before continuing.


  • J. Am. Coll. Surg. · Jan 2024

    Optimizing Mass Casualty Triage: Using Discrete Event Simulation to Minimize Time to Resuscitation.

    • Noah M Igra, Daniela Schmulevich, Zhi Geng, Jessica Guzman, Paul D Biddinger, Jonathan D Gates, Philip C Spinella, Mark H Yazer, Jeremy W Cannon, and THOR-AABB Workgroup.
    • From the Department of Surgery, Division of Traumatology, Surgical Critical Care & Emergency Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA (Igra, Geng, Cannon).
    • J. Am. Coll. Surg. 2024 Jan 1; 238 (1): 415341-53.

    BackgroundUrban areas in the US are increasingly focused on mass casualty incident (MCI) response. We simulated prehospital triage scenarios and hypothesized that using hospital-based blood product inventories for on-scene triage decisions would minimize time to treatment.Study DesignDiscrete event simulations modeled MCI casualty injury and patient flow after a simulated blast event in Boston, MA. Casualties were divided into moderate (Injury Severity Score 9 to 15) and severe (Injury Severity Score >15) based on injury patterns. Blood product inventories were collected from all hospitals (n = 6). The primary endpoint was the proportion of casualties managed with 1:1:1 balanced resuscitation in a target timeframe (moderate, 3.5 U red blood cells in 6 hours; severe, 10 U red blood cells in 1 hour). Three triage scenarios were compared, including unimpeded casualty movement to proximate hospitals (Nearest), equal distribution among hospitals (Equal), and blood product inventory-based triage (Supply-Guided).ResultsSimulated MCIs generated a mean ± SD of 302 ± 7 casualties, including 57 ± 2 moderate and 15 ± 2 severe casualties. Nearest triage resulted in significantly fewer overall casualties treated in the target time (55% vs Equal 86% vs Supply-Guided 91%, p < 0.001). These differences were principally due to fewer moderate casualties treated, but there was no difference among strategies for severe casualties.ConclusionsIn this simulation study comparing different triage strategies, including one based on actual blood product inventories, nearest hospital triage was inferior to equal distribution or a Supply-Guided strategy. Disaster response leaders in US urban areas should consider modeling different MCI scenarios and casualty numbers to determine optimal triage strategies for their area given hospital numbers and blood product availability.Copyright © 2023 by the American College of Surgeons. Published by Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…