• Anesthesia and analgesia · Mar 2024

    Introduction to Bayesian Analyses for Clinical Research.

    • Emine Ozgur Bayman, Jacob J Oleson, and Franklin Dexter.
    • From the Departments of Biostatistics and Anesthesia, Clinical Trials Statistical and Data Management Center, University of Iowa, Iowa City, Iowa.
    • Anesth. Analg. 2024 Mar 1; 138 (3): 530541530-541.

    AbstractBayesian analyses are becoming more popular as a means of analyzing data, yet the Bayesian approach is novel to many members of the broad clinical audience. While Bayesian analyses are foundational to anesthesia pharmacokinetic/pharmacodynamic modeling, they also can be used for analyzing data from clinical trials or observational studies. The traditional null hypothesis significance testing (frequentist) approach uses only the data collected from the current study to make inferences. On the other hand, the Bayesian approach quantifies the external information or expert knowledge and combines the external information with the study data, then makes inference from this combined information. We introduce to the clinical and translational science researcher what it means to do Bayesian statistics, why a researcher would choose to perform their analyses using the Bayesian approach, when it would be advantageous to use a Bayesian instead of a frequentist approach, and how Bayesian analyses and interpretations differ from the more traditional frequentist methods. Throughout this paper, we use various pain- and anesthesia-related examples to highlight the ideas and statistical concepts that should be relatable to other areas of research as well.Copyright © 2023 International Anesthesia Research Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…