-
- Jonathan Kusins, Scott Uyekawa, Gurpreet Singh, Yun Peng, Chase McQuarrie, Paul Holman, Ivan Cheng, and Michael Jekir.
- NuVasive, San Diego, California, USA. Electronic address: jkusins@nuvasive.com.
- World Neurosurg. 2024 Jan 1; 181: e722e731e722-e731.
ObjectiveTo investigate how the expansion trajectory of a lateral expandable cage affects pressure distribution at the cage-endplate interface under well-controlled biomechanical loading conditions.MethodsThree unique vertical height expansion trajectories used by clinically relevant lateral expandable cages were evaluated: craniocaudal, fixed-arc, and independently adjustable anterior and posterior height expansion. Two biomechanical loading scenarios were performed. The first scenario used custom bone foam test blocks to assess resultant pressure distribution at varying test block lordotic angles and expansion heights. The second scenario simulated expansion using synthetic spine units and compared the pressure distribution following expansion.ResultsFor an expandable cage with craniocaudal expansion, the pressure distribution at the cage-endplate interface was found to depend heavily on the lordotic angle of the test block (P < 0.001), but not expansion height (P = 0.634). The greatest maximum pressure occurred at higher test block lordotic angles. For an expandable cage with fixed-arc expansion, the pressure distribution shifted anteriorly throughout expansion. In the simulated expansion trials, an expandable cage with adjustable anterior and posterior height expansion was found to improve the pressure distribution at the cage-endplate interface, reducing the maximum pressure measurements by 22% and 14% in the craniocaudal and fixed-arc expansion, respectively.ConclusionsOf the cage designs evaluated in this study, an expandable cage with independently adjustable anterior and posterior heights lowered the maximum pressure measured at the cage-endplate interface and alleviated the potential of cage edge loading, both of which are important considerations that are fundamental for a successful fusion procedure and the mitigation of implant subsidence risk.Copyright © 2023 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.