• Am. J. Physiol. Heart Circ. Physiol. · Jan 2002

    Comparative Study

    Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis.

    • Christopher G Ellis, Ryon M Bateman, Michael D Sharpe, William J Sibbald, and Ravi Gill.
    • Vascular Biology Program, Lawson Health Research Institute, London Health Sciences Centre, London, Ontario N6B 1B8, Canada. chris.ellis@uwo.ca
    • Am. J. Physiol. Heart Circ. Physiol. 2002 Jan 1;282(1):H156-64.

    AbstractInherent in the remote organ injury caused by sepsis is a profound maldistribution of microvascular blood flow. Using a 24-h rat cecal ligation and perforation model of sepsis, we studied O(2) transport in individual capillaries of the extensor digitorum longus (EDL) skeletal muscle. We hypothesized that erythrocyte O(2) saturation (SO(2)) levels within normally flowing capillaries would provide evidence of either a mitochondrial failure (increased SO(2)) or an O(2) transport derangement (decreased SO(2)). Using a spectrophotometric functional imaging system, we found that sepsis caused 1) an increase in stopped flow capillaries (from 10 to 38%, P < 0.05), 2) an increase in the proportion of fast-flow to normal-flow capillaries (P < 0.05), and 3) a decrease in capillary venular-end SO(2) levels from 58.4 +/- 20.0 to 38.5 +/- 21.2%, whereas capillary arteriolar-end SO(2) levels remained unchanged compared with the sham group. Capillary O(2) extraction increased threefold (P < 0.05) and was directly related to the degree of stopped flow in the EDL. Thus impaired O(2) transport in early stage sepsis is likely the result of a microcirculatory dysfunction.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.