-
- Neng-Tai Chiu, Beau Chuang, Suthawan Anakmeteeprugsa, Kirk H Shelley, Aymen Awad Alian, and Hau-Tieng Wu.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- J Clin Monit Comput. 2024 Feb 1; 38 (1): 101112101-112.
AbstractDevelop a signal quality index (SQI) for the widely available peripheral venous pressure waveform (PVP). We focus on the quality of the cardiac component in PVP. We model PVP by the adaptive non-harmonic model. When the cardiac component in PVP is stronger, the PVP is defined to have a higher quality. This signal quality is quantified by applying the synchrosqueezing transform to decompose the cardiac component out of PVP, and the SQI is defined as a value between 0 and 1. A database collected during the lower body negative pressure experiment is utilized to validate the developed SQI. All signals are labeled into categories of low and high qualities by experts. A support vector machine (SVM) learning model is trained for practical purpose. The developed signal quality index coincide with human experts' labels with the area under the curve 0.95. In a leave-one-subject-out cross validation (LOSOCV), the SQI achieves accuracy 0.89 and F1 0.88, which is consistently higher than other commonly used signal qualities, including entropy, power and mean venous pressure. The trained SVM model trained with SQI, entropy, power and mean venous pressure could achieve an accuracy 0.92 and F1 0.91 under LOSOCV. An exterior validation of SQI achieves accuracy 0.87 and F1 0.92; an exterior validation of the SVM model achieves accuracy 0.95 and F1 0.96. The developed SQI has a convincing potential to help identify high quality PVP segments for further hemodynamic study. This is the first work aiming to quantify the signal quality of the widely applied PVP waveform.© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.