• Anesthesiology · Sep 1999

    High-dose nitric oxide inhalation increases lung injury after gastric aspiration.

    • N D Nader, P R Knight, I Bobela, B A Davidson, K J Johnson, and F Morin.
    • Department of Anesthesiology, State University of New York at Buffalo, USA. nnaderdj@acsu.buffalo.edu
    • Anesthesiology. 1999 Sep 1;91(3):741-9.

    BackgroundInhaled nitric oxide is often used in patients with adult respiratory distress syndrome. However, nitric oxide also may be significantly toxic, especially if administered concurrently with hyperoxia. The authors evaluated the isolated effect of nitric oxide and the combined effects of nitric oxide and hyperoxia on lung injury in rats after acid aspiration.MethodsAnimals were injured by instillation of 1.2 ml/kg hydrogen chloride in low-pH saline (the acid group) or acidified gastric particles (the casp group) into the lungs under halothane anesthesia via a tracheal catheter. Controls received no injury vehicle but rather underwent the surgical process. After recovery from anesthesia, the animals were exposed to 20% or 90% oxygen with or without 20, 40, or 80 ppm nitric oxide for 5 h. The permeability index, alveolar-arterial oxygen difference, the ratio of oxygen pressure to the inspired fraction of oxygen, and the ratio of wet to dry weight were assessed 5 h after injury as indices of lung injury. Data were assessed using analysis of variance.ResultsEach group included 6-10 rats. Exposure to nitric oxide (80 ppm) in air increased protein permeability in the lungs to a permeability index of 1.42+/-0.12 after acid aspiration. The combination of nitric oxide (80 ppm) and hyperoxia further increased protein leakage to a permeability index of 2.1+/-0.25. Exposure to lower concentrations of nitric oxide (e.g., 20 and 40 ppm) increased the permeability index of the lungs (1.44+/-0.21, 1.75+/-0.29, respectively) in the presence of hyperoxia, although it did not affect the permeability index of the lungs during exposure to air. Pretreatment of animals with deferoxamine and methylene blue partially inhibited the adverse effect of hyperoxia and nitric oxide, which suggested a complex underlying mechanism involving both reactive-species generation and pulmonary vasomotor changes.ConclusionsThese results show that inhaled nitric oxide at 80 ppm for a short duration (5 h) increases the severity of the inflammatory microvascular lung injury after acid aspiration. The pulmonary damage is exacerbated further in the presence of high oxygen concentrations. Although lower concentrations of nitric oxide did not increase the extent of lung injury, longer exposure times need to be assessed.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.