• PLoS medicine · Nov 2023

    Sociodemographic characteristics and longitudinal progression of multimorbidity: A multistate modelling analysis of a large primary care records dataset in England.

    • Sida Chen, Tom Marshall, Christopher Jackson, Jennifer Cooper, Francesca Crowe, Krish Nirantharakumar, Catherine L Saunders, Paul Kirk, Sylvia Richardson, Duncan Edwards, Simon Griffin, Christopher Yau, and Jessica K Barrett.
    • MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom.
    • PLoS Med. 2023 Nov 1; 20 (11): e1004310e1004310.

    BackgroundMultimorbidity, characterised by the coexistence of multiple chronic conditions in an individual, is a rising public health concern. While much of the existing research has focused on cross-sectional patterns of multimorbidity, there remains a need to better understand the longitudinal accumulation of diseases. This includes examining the associations between important sociodemographic characteristics and the rate of progression of chronic conditions.Methods And FindingsWe utilised electronic primary care records from 13.48 million participants in England, drawn from the Clinical Practice Research Datalink (CPRD Aurum), spanning from 2005 to 2020 with a median follow-up of 4.71 years (IQR: 1.78, 11.28). The study focused on 5 important chronic conditions: cardiovascular disease (CVD), type 2 diabetes (T2D), chronic kidney disease (CKD), heart failure (HF), and mental health (MH) conditions. Key sociodemographic characteristics considered include ethnicity, social and material deprivation, gender, and age. We employed a flexible spline-based parametric multistate model to investigate the associations between these sociodemographic characteristics and the rate of different disease transitions throughout multimorbidity development. Our findings reveal distinct association patterns across different disease transition types. Deprivation, gender, and age generally demonstrated stronger associations with disease diagnosis compared to ethnic group differences. Notably, the impact of these factors tended to attenuate with an increase in the number of preexisting conditions, especially for deprivation, gender, and age. For example, the hazard ratio (HR) (95% CI; p-value) for the association of deprivation with T2D diagnosis (comparing the most deprived quintile to the least deprived) is 1.76 ([1.74, 1.78]; p < 0.001) for those with no preexisting conditions and decreases to 0.95 ([0.75, 1.21]; p = 0.69) with 4 preexisting conditions. Furthermore, the impact of deprivation, gender, and age was typically more pronounced when transitioning from an MH condition. For instance, the HR (95% CI; p-value) for the association of deprivation with T2D diagnosis when transitioning from MH is 2.03 ([1.95, 2.12], p < 0.001), compared to transitions from CVD 1.50 ([1.43, 1.58], p < 0.001), CKD 1.37 ([1.30, 1.44], p < 0.001), and HF 1.55 ([1.34, 1.79], p < 0.001). A primary limitation of our study is that potential diagnostic inaccuracies in primary care records, such as underdiagnosis, overdiagnosis, or ascertainment bias of chronic conditions, could influence our results.ConclusionsOur results indicate that early phases of multimorbidity development could warrant increased attention. The potential importance of earlier detection and intervention of chronic conditions is underscored, particularly for MH conditions and higher-risk populations. These insights may have important implications for the management of multimorbidity.Copyright: © 2023 Chen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.