-
- Marcus Young, Natasha E Holmes, Kartik Kishore, Sobia Amjad, Michele Gaca, Ary Serpa Neto, Michael C Reade, and Rinaldo Bellomo.
- Data Analytics Research and Evaluation (DARE) Centre, Austin Health and The University of Melbourne, Heidelberg, VIC, Australia.
- Crit Care. 2023 Nov 4; 27 (1): 425425.
BackgroundNatural language processing (NLP) may help evaluate the characteristics, prevalence, trajectory, treatment, and outcomes of behavioural disturbance phenotypes in critically ill patients.MethodsWe obtained electronic clinical notes, demographic information, outcomes, and treatment data from three medical-surgical ICUs. Using NLP, we screened for behavioural disturbance phenotypes based on words suggestive of an agitated state, a non-agitated state, or a combination of both.ResultsWe studied 2931 patients. Of these, 225 (7.7%) were NLP-Dx-BD positive for the agitated phenotype, 544 (18.6%) for the non-agitated phenotype and 667 (22.7%) for the combined phenotype. Patients with these phenotypes carried multiple clinical baseline differences. On time-dependent multivariable analysis to compensate for immortal time bias and after adjustment for key outcome predictors, agitated phenotype patients were more likely to receive antipsychotic medications (odds ratio [OR] 1.84, 1.35-2.51, p < 0.001) compared to non-agitated phenotype patients but not compared to combined phenotype patients (OR 1.27, 0.86-1.89, p = 0.229). Moreover, agitated phenotype patients were more likely to die than other phenotypes patients (OR 1.57, 1.10-2.25, p = 0.012 vs non-agitated phenotype; OR 4.61, 2.14-9.90, p < 0.001 vs. combined phenotype). This association was strongest in patients receiving mechanical ventilation when compared with the combined phenotype (OR 7.03, 2.07-23.79, p = 0.002). A similar increased risk was also seen for patients with the non-agitated phenotype compared with the combined phenotype (OR 6.10, 1.80-20.64, p = 0.004).ConclusionsNLP-Dx-BD screening enabled identification of three behavioural disturbance phenotypes with different characteristics, prevalence, trajectory, treatment, and outcome. Such phenotype identification appears relevant to prognostication and trial design.© 2023. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.