-
- Julia Mt Colombijn, Lotty Hooft, Min Jun, Angela C Webster, Michiel L Bots, Marianne C Verhaar, and Robin Wm Vernooij.
- Department of Nephrology and Hypertension, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands.
- Cochrane Db Syst Rev. 2023 Nov 2; 11 (11): CD008176CD008176.
BackgroundChronic kidney disease (CKD) is a significant risk factor for cardiovascular disease (CVD) and death. Increased oxidative stress in people with CKD has been implicated as a potential causative factor. Antioxidant therapy decreases oxidative stress and may consequently reduce cardiovascular morbidity and death in people with CKD. This is an update of a Cochrane review first published in 2012.ObjectivesTo examine the benefits and harms of antioxidant therapy on death and cardiovascular and kidney endpoints in adults with CKD stages 3 to 5, patients undergoing dialysis, and kidney transplant recipients.Search MethodsWe searched the Cochrane Kidney and Transplant Register of Studies until 15 November 2022 using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal, and ClinicalTrials.gov.Selection CriteriaWe included all randomised controlled trials investigating the use of antioxidants, compared with placebo, usual or standard care, no treatment, or other antioxidants, for adults with CKD on cardiovascular and kidney endpoints.Data Collection And AnalysisTitles and abstracts were screened independently by two authors who also performed data extraction using standardised forms. Results were pooled using random effects models and expressed as risk ratios (RR) or mean difference (MD) with 95% confidence intervals (CI). Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.Main ResultsWe included 95 studies (10,468 randomised patients) that evaluated antioxidant therapy in adults with non-dialysis-dependent CKD (31 studies, 5342 patients), dialysis-dependent CKD (41 studies, 3444 patients) and kidney transplant recipients (21 studies, 1529 patients). Two studies enrolled dialysis and non-dialysis patients (153 patients). Twenty-one studies assessed the effects of vitamin antioxidants, and 74 assessed the effects of non-vitamin antioxidants. Overall, the quality of included studies was moderate to low or very low due to unclear or high risk of bias for randomisation, allocation concealment, blinding, and loss to follow-up. Compared with placebo, usual care, or no treatment, antioxidant therapy may have little or no effect on cardiovascular death (8 studies, 3813 patients: RR 0.94, 95% CI 0.64 to 1.40; I² = 33%; low certainty of evidence) and probably has little to no effect on death (any cause) (45 studies, 7530 patients: RR 0.95, 95% CI 0.82 to 1.11; I² = 0%; moderate certainty of evidence), CVD (16 studies, 4768 patients: RR 0.79, 95% CI 0.63 to 0.99; I² = 23%; moderate certainty of evidence), or loss of kidney transplant (graft loss) (11 studies, 1053 patients: RR 0.88, 95% CI 0.67 to 1.17; I² = 0%; moderate certainty of evidence). Compared with placebo, usual care, or no treatment, antioxidants had little to no effect on the slope of urinary albumin/creatinine ratio (change in UACR) (7 studies, 1286 patients: MD -0.04 mg/mmol, 95% CI -0.55 to 0.47; I² = 37%; very low certainty of evidence) but the evidence is very uncertain. Antioxidants probably reduced the progression to kidney failure (10 studies, 3201 patients: RR 0.65, 95% CI 0.41 to 1.02; I² = 41%; moderate certainty of evidence), may improve the slope of estimated glomerular filtration rate (change in eGFR) (28 studies, 4128 patients: MD 3.65 mL/min/1.73 m², 95% CI 2.81 to 4.50; I² = 99%; low certainty of evidence), but had uncertain effects on the slope of serum creatinine (change in SCr) (16 studies, 3180 patients: MD -13.35 µmol/L, 95% CI -23.49 to -3.23; I² = 98%; very low certainty of evidence). Possible safety concerns are an observed increase in the risk of infection (14 studies, 3697 patients: RR 1.30, 95% CI 1.14 to 1.50; I² = 3%; moderate certainty of evidence) and heart failure (6 studies, 3733 patients: RR 1.40, 95% CI 1.11 to 1.75; I² = 0; moderate certainty of evidence) among antioxidant users. Results of studies with a low risk of bias or longer follow-ups generally were comparable to the main analyses. We found no evidence that antioxidants reduced death or improved kidney transplant outcomes or proteinuria in patients with CKD. Antioxidants likely reduce cardiovascular events and progression to kidney failure and may improve kidney function. Possible concerns are an increased risk of infections and heart failure among antioxidant users. However, most studies were of suboptimal quality and had limited follow-up, and few included people undergoing dialysis or kidney transplant recipients. Furthermore, the large heterogeneity in interventions hampers drawing conclusions on the efficacy and safety of individual agents.Copyright © 2023 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.