• Bmc Med · Oct 2018

    Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review.

    • Debebe Shaweno, Malancha Karmakar, Kefyalew Addis Alene, Romain Ragonnet, Archie Ca Clements, James M Trauer, Justin T Denholm, and Emma S McBryde.
    • Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia. debebesh@gmail.com.
    • Bmc Med. 2018 Oct 18; 16 (1): 193193.

    BackgroundTuberculosis (TB) transmission often occurs within a household or community, leading to heterogeneous spatial patterns. However, apparent spatial clustering of TB could reflect ongoing transmission or co-location of risk factors and can vary considerably depending on the type of data available, the analysis methods employed and the dynamics of the underlying population. Thus, we aimed to review methodological approaches used in the spatial analysis of TB burden.MethodsWe conducted a systematic literature search of spatial studies of TB published in English using Medline, Embase, PsycInfo, Scopus and Web of Science databases with no date restriction from inception to 15 February 2017. The protocol for this systematic review was prospectively registered with PROSPERO ( CRD42016036655 ).ResultsWe identified 168 eligible studies with spatial methods used to describe the spatial distribution (n = 154), spatial clusters (n = 73), predictors of spatial patterns (n = 64), the role of congregate settings (n = 3) and the household (n = 2) on TB transmission. Molecular techniques combined with geospatial methods were used by 25 studies to compare the role of transmission to reactivation as a driver of TB spatial distribution, finding that geospatial hotspots are not necessarily areas of recent transmission. Almost all studies used notification data for spatial analysis (161 of 168), although none accounted for undetected cases. The most common data visualisation technique was notification rate mapping, and the use of smoothing techniques was uncommon. Spatial clusters were identified using a range of methods, with the most commonly employed being Kulldorff's spatial scan statistic followed by local Moran's I and Getis and Ord's local Gi(d) tests. In the 11 papers that compared two such methods using a single dataset, the clustering patterns identified were often inconsistent. Classical regression models that did not account for spatial dependence were commonly used to predict spatial TB risk. In all included studies, TB showed a heterogeneous spatial pattern at each geographic resolution level examined.ConclusionsA range of spatial analysis methodologies has been employed in divergent contexts, with all studies demonstrating significant heterogeneity in spatial TB distribution. Future studies are needed to define the optimal method for each context and should account for unreported cases when using notification data where possible. Future studies combining genotypic and geospatial techniques with epidemiologically linked cases have the potential to provide further insights and improve TB control.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…