• World Neurosurg · Jan 2024

    A radiomics model based on CT images combined with multiple machine learning models to predict the prognosis of spontaneous intracerebral hemorrhage.

    • Lei Pei, Tao Fang, Liang Xu, and Chenfeng Ni.
    • Department of Radiology, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China.
    • World Neurosurg. 2024 Jan 1; 181: e856e866e856-e866.

    ObjectiveWe aimed to construct 3 predictive models, including a clinical model, a radiomics model, and a combined model, to forecast the discharge prognosis of patients with intracerebral hemorrhage on admission.MethodsA retrospective study was conducted, involving a total of 161 patients with intracerebral hemorrhage (ICH). At a ratio of 7:3, 115 of these patients were assigned to the training cohort, and 46 of these patients were assigned to the validation cohort. To produce the radionics signature and pick the features to use in its construction, the least absolute shrinkage and selection operator (LASSO) regression was applied. Five machine models were applied, and the optimal model was chosen to construct the radionics model. A clinical model was constructed using univariate and stepwise analysis to identify independent risk variables for poor outcomes at discharge. A predictive combined model nomogram was generated by integrating the clinical model and radiomics model. The performance of the nomogram was assessed in the training cohort and validated in the validation cohort. Analyses of the receiver operating characteristic curve (ROC), the calibration curve, and the decision curve were performed to assess the performance of the combined model.ResultsThis study encompassed a cohort of 161 individuals diagnosed with intracerebral hemorrhage (ICH), consisting of 110 males and 51 females. Utilizing the modified Rankin Scale (mRS) at discharge, the analysis revealed that 89 patients (55.3%) had a good prognosis, while 72 patients (44.7%) had a poor prognosis. Only 8 out of 1130 radiomics features were selected and used in conjunction with the LR algorithm to develop the radiomics model. Sex, IVH, GCS score, and ICH volume were determined to be independent predictors of poor outcomes at the time of discharge. The AUC values of the combined model, radiomics model, and clinical model were 0.8583, 0.8364, and 0.7579 in the training cohort, and 0.9153, 0.8692, and 0.7114 in the validation cohort, respectively. The combined model nomogram exhibited good calibration and clinical benefit in both the training and validation cohorts. The decision curve analysis (DCA) displays that the combined model obtained the highest net benefit compared to the radiomics model and clinics model in the training cohort.ConclusionsThe combined model demonstrates reliability and efficacy in predicting the discharge prognosis of ICH, enabling physicians to perform individualized risk assessments, and make optimal choices about patients with ICH.Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…