-
- Mahan Ghafari, Sepanta Hosseinpour, Mohammad Saeid Rezaee-Zavareh, Stefan Dascalu, Somayeh Rostamian, Kiarash Aramesh, Kaveh Madani, and Shahram Kordasti.
- Big Data Institute and Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. mahan.ghafari@ndm.ox.ac.uk.
- Bmc Med. 2023 Nov 13; 21 (1): 429429.
BackgroundVaccination has played a pivotal role in reducing the burden of COVID-19. Despite numerous studies highlighting its benefits in reducing the risk of severe disease and death, we still lack a quantitative understanding of how varying vaccination roll-out rates influence COVID-19 mortality.MethodsWe developed a framework for estimating the number of avertable COVID-19 deaths (ACDs) by vaccination in Iran. To achieve this, we compared Iran's vaccination roll-out rates with those of eight model countries that predominantly used inactivated virus vaccines. We calculated net differences in the number of fully vaccinated individuals under counterfactual scenarios where Iran's per-capita roll-out rate was replaced with that of the model countries. This, in turn, enabled us to determine age specific ACDs for the Iranian population under counterfactual scenarios where number of COVID-19 deaths are estimated using all-cause mortality data. These estimates covered the period from the start of 2020 to 20 April 2022.ResultsWe found that while Iran would have had an approximately similar number of fully vaccinated individuals under counterfactual roll-out rates based on Bangladesh, Nepal, Sri Lanka, and Turkey (~ 65-70%), adopting Turkey's roll-out rates could have averted 50,000 (95% confidence interval: 38,100-53,500) additional deaths, while following Bangladesh's rates may have resulted in 52,800 (17,400-189,500) more fatalities in Iran. Surprisingly, mimicking Argentina's slower roll-out led to only 12,600 (10,400-13,300) fewer deaths, despite a higher counterfactual percentage of fully vaccinated individuals (~ 79%). Emulating Montenegro or Bolivia, with faster per capita roll-out rates and approximately 50% counterfactual full vaccination, could have prevented more deaths in older age groups, especially during the early waves. Finally, replicating Bahrain's model as an upper-bound benchmark, Iran could have averted 75,300 (56,000-83,000) deaths, primarily in the > 50 age groups.ConclusionsOur analysis revealed that faster roll-outs were consistently associated with higher numbers of averted deaths, even in scenarios with lower overall coverage. This study offers valuable insights into future decision-making regarding infectious disease epidemic management through vaccination strategies. It accomplishes this by comparing various countries' relative performance in terms of timing, pace, and vaccination coverage, ultimately contributing to the prevention of COVID-19-related deaths.© 2023. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.