• Military medicine · Nov 2023

    Impact of Blast Overpressure on the Pharmacokinetics of Various Antibiotics in Sprague Dawley Rats.

    • Kariana E Rios, Daniel J Selig, Radmila Pavlovic, Yonas Alamneh, Chau Vuong, Robert John Nadeau, Kristina M Pannone, Jesse P Deluca, Joseph B Long, Venkatasivasai S Sajja, Stuart Tyner, Vlado Antonic, Derese Getnet, and Alexander G Bobrov.
    • Wound Infections Department, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
    • Mil Med. 2023 Nov 8; 188 (Suppl 6): 271279271-279.

    IntroductionCombat injuries are complex and multimodal. Most injuries to the extremities occur because of explosive devices such as improvised explosive devices. Blast exposure dramatically increases the risk of infection in combat wounds, and there is limited available information on the best antibiotic treatments for these injuries. We previously demonstrated that mice exposed to blast displayed a delayed clearance of cefazolin from the plasma and liver; further semi-mechanistic modeling determined that cefazolin concentrations in the skin of these mice were reduced. Our objective was to investigate the effects of blast on the pharmacokinetics of antibiotics of different types used for the treatment of combat wounds in the rat model.Materials And MethodsMale Sprague Dawley rats were exposed to blast overpressure followed by injection of a bolus of animal equivalent doses of an antibiotic (cefazolin, cefepime, ertapenem, or clindamycin) into the tail vein at 1-hour post-blast exposure. Blood was collected at predetermined time points via repeated sampling from the tail vein. Animals were also euthanized at predetermined time points, at which time liver, kidney, skin, and blood via cardiac puncture were collected. Antibiotic concentrations were determined by ultra-performance liquid chromatography-tandem mass spectrometry.ResultsBlast-exposed rats exhibited a similar rate of clearance compared to non-blasted rats in the blood, liver, kidney, and skin, which is inconsistent with the data regarding cefazolin in blast-exposed mice.ConclusionsOur results in rats do not recapitulate our previous observation of delayed cefazolin clearance in mice following the blast overpressure exposure. Although using rats permitted us to collect multiple blood samples from the same animals, rats may not be a suitable model for measuring the pharmacokinetics of antibiotics following blast. The interpretation of the results may be challenging because of variation in data among rat subjects in the same sample groups.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2023. This work is written by (a) US Government employee(s) and is in the public domain in the US.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.