-
- Tyler F Rooks, Valeta Carol Chancey, Jamie L Baisden, and Narayan Yoganandan.
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Mil Med. 2023 Nov 8; 188 (Suppl 6): 420427420-427.
IntroductionBecause brain regions are responsible for specific functions, regional damage may cause specific, predictable symptoms. However, the existing brain injury criteria focus on whole brain response. This study developed and validated a detailed human brain computational model with sufficient fidelity to include regional components and demonstrate its feasibility to obtain region-specific brain strains under selected loading.MethodsModel development used the Simulated Injury Monitor (SIMon) model as a baseline. Each SIMon solid element was split into 8, with each shell element split into 4. Anatomical regions were identified from FreeSurfer fsaverage neuroimaging template. Material properties were obtained from literature. The model was validated against experimental intracranial pressure, brain-skull displacement, and brain strain data. Model simulations used data from laboratory experiments with a rigid arm pendulum striking a helmeted head-neck system. Data from impact tests (6 m/s) at 2 helmet sites (front and left) were used.ResultsModel validation showed good agreement with intracranial pressure response, fair to good agreement with brain-skull displacement, and good agreement for brain strain. CORrelation Analysis scores were between 0.72 and 0.93 for both maximum principal strain (MPS) and shear strain. For frontal impacts, regional MPS was between 0.14 and 0.36 (average of left and right hemispheres). For lateral impacts, MPS was between 0.20 and 0.48 (left hemisphere) and between 0.22 and 0.51 (right hemisphere). For frontal impacts, regional cumulative strain damage measure (CSDM20) was between 0.01 and 0.87. For lateral impacts, CSDM20 was between 0.36 and 0.99 (left hemisphere) and between 0.09 and 0.93 (right hemisphere).ConclusionsRecognizing that neural functions are related to anatomical structures and most model-based injury metrics focus on whole brain response, this study developed an anatomically accurate human brain model to capture regional responses. Model validation was comparable with current models. The model provided sufficient anatomical detail to describe brain regional responses under different impact conditions.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2023. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.