• Military medicine · Nov 2023

    Subaxial Cervical Spine Motion With Different Sizes of Head-supported Mass Under Accelerative Forces.

    • Hoon Choi, Yuvaraj Purushothaman, Bhavika Gupta, Anjishnu Banerjee, and Narayan Yoganandan.
    • Department of Neurosurgery, Medical College of Wisconsin, Milwaukee,WI 53226, USA.
    • Mil Med. 2023 Nov 8; 188 (Suppl 6): 458465458-465.

    IntroductionThe evolution of military helmet devices has increased the amount of head-supported mass (HSM) worn by warfighters. HSM has important implications for spine biomechanics, and yet, there is a paucity of studies that investigated the effects of differing HSM and accelerative profiles on spine biomechanics. The aim of this study is to investigate the segmental motions in the subaxial cervical spine with different sizes of HSM under Gx accelerative loading.MethodsA three-dimensional finite element model of the male head-neck spinal column was used. Three different size military helmets were modeled and incorporated into head-neck model. The models were exercised under Gx accelerative loading by inputting low and high pulses to the cervical vertebra used in the experimental studies. Segmental motions were obtained and normalized with respect to the non-HSM case to quantify the effect of HSM.ResultsSegmental motions increased with an increase in velocity at all segments of the spine. Increasing helmet size resulted in larger motion increases. Angulations ranged from 0.9° to 9.3° at 1.8 m/s and from 1.3° to 10.3° at 2.6 m/s without a helmet. Helmet increased motion between 5% to 74% at 1.8 m/s. At 2.6 m/s, the helmet increased segmental motion anywhere from 10% to 105% in the subaxial cervical spine. The greatest motion was seen at the C5-C6 level, followed by the C6-C7 level.ConclusionsThe subaxial cervical spine experiences motion increases at all levels at both velocity profiles with increasing HSM. Larger helmet and greater impact velocity increased motion at all levels, with C5-C6 demonstrating the largest range of motion. HSM should be minimized to reduce the risk of cervical spine injury to the warfighter.© The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…