-
- Mateo C Houle, Christian T Cavacece, Michael A Gonzales, Jess T Anderson, John C Hunninghake, Aaron B Holley, and Michael J Morris.
- Pulmonary/Critical Care Service, Department of Medicine, Brooke Army Medical Center, JBSA Fort Sam Houston, TX 78234, USA.
- Mil Med. 2023 Nov 8; 188 (Suppl 6): 400406400-406.
IntroductionEvaluation of chronic respiratory symptoms in deployed military personnel has been conducted at Brooke Army Medical Center as part of the Study of Active Duty Military for Pulmonary Disease Related to Environmental Deployment Exposures III study. Although asthma and airway hyperreactivity have been the most common diagnoses, the clinical findings in these patients may be multifactorial. This study aims to evaluate the utility of impulse oscillometry (IOS) in diagnosing airway obstruction in patients undergoing multiple pulmonary function testing (PFT) studies.MethodsMilitary personnel referred for deployed-related pulmonary symptoms underwent a standardized evaluation at Brooke Army Medical Center and Walter Reed National Military Medical Center over a 5-year span. Initial studies included laboratory tests, high-resolution computed tomography imaging, cardiac evaluation with electrocardiogram, and echocardiography. PFT consisted of full PFTs, forced inspiratory/expiratory pressures, post-spirometry bronchodilator testing, IOS, exhaled nitric oxide, and methacholine challenge testing.ResultsA total of 360 patients have completed an evaluation to date. In this cohort, 108 patients (30.0%) have evidence of obstruction by spirometry, whereas 74 (20.6%) had IOS values of both an R5 > 150% and X5 < -1.5. Only 32 (8.9%) had evidence of obstruction by both spirometry and IOS, whereas 210 (57.3%) had neither. A comparison among R5 (resistance at 5 Hz), R20 (resistance at 20 Hz), and X5 (reactance at 5 Hz) was performed in those individuals with and without spirometric obstruction. R5 (% predicted) was 156.2 ± 57.4% (obstruction) vs. 129.1 ± 39.6% (no obstruction) (P < .001); R20 (% predicted) was 138.1 ± 37.7% (obstruction) vs. 125.3 ± 31.2% (no obstruction) (P = .007); and X5 (cmH2O/L/s) was -1.62 ± 1.28 (obstruction) vs. -1.25 ± 0.55 (no obstruction) (P < .001).DiscussionImpulse oscillometry has been advocated as a supplemental pulmonary function test to aid in the diagnosis of airway obstruction. The use of IOS has been primarily used in pediatrics and elderly populations as a validated tool to establish a diagnosis of airway obstruction but is limited in the adult population because of a well-validated set of reference values. Prior studies in adults have most often demonstrated a correlation with an elevated R5 > 150%, elevated resonant frequency, and a negative X5 < -1.5 or a decrease of 30 to 35% in R5 post-bronchodilator.ConclusionImpulse oscillometry may serve as an adjunct to diagnosis but likely cannot replace a standard spirometric evaluation. Our study highlights the future utility for diagnosing early obstructive disease in the symptomatic individual.Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2023. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.