• Military medicine · Nov 2023

    Robust Multi-View Fracture Detection in the Presence of Other Abnormalities Using HAMIL-Net.

    • Xing Lu, Eric Y Chang, Jiang Du, An Yan, Julian McAuley, Amilcare Gentili, and Chun-Nan Hsu.
    • University of California, San Diego, La Jolla, CA 92093, USA.
    • Mil Med. 2023 Nov 8; 188 (Suppl 6): 590597590-597.

    IntroductionFoot and ankle fractures are the most common military health problem. Automated diagnosis can save time and personnel. It is crucial to distinguish fractures not only from normal healthy cases, but also robust against the presence of other orthopedic pathologies. Artificial intelligence (AI) deep learning has been shown to be promising. Previously, we have developed HAMIL-Net to automatically detect orthopedic injuries for upper extremity injuries. In this research, we investigated the performance of HAMIL-Net for detecting foot and ankle fractures in the presence of other abnormalities.Materials And MethodsHAMIL-Net is a novel deep neural network consisting of a hierarchical attention layer followed by a multiple-instance learning layer. The design allowed it to deal with imaging studies with multiple views. We used 148K musculoskeletal imaging studies for 51K Veterans at VA San Diego in the past 20 years to create datasets for this research. We annotated each study by a semi-automated pipeline leveraging radiology reports written by board-certified radiologists and extracting findings with a natural language processing tool and manually validated the annotations.ResultsHAMIL-Net can be trained with study-level, multiple-view examples, and detect foot and ankle fractures with a 0.87 area under the receiver operational curve, but the performance dropped when tested by cases including other abnormalities. By integrating a fracture specialized model with one that detecting a broad range of abnormalities, HAMIL-Net's accuracy of detecting any abnormality improved from 0.53 to 0.77 and F-score from 0.46 to 0.86. We also reported HAMIL-Net's performance under different study types including for young (age 18-35) patients.ConclusionsAutomated fracture detection is promising but to be deployed in clinical use, presence of other abnormalities must be considered to deliver its full benefit. Our results with HAMIL-Net showed that considering other abnormalities improved fracture detection and allowed for incidental findings of other musculoskeletal abnormalities pertinent or superimposed on fractures.© The Association of Military Surgeons of the United States 2023. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…