-
- Chao-Chen Chen, Shavonne L Massey, Matthew P Kirschen, Ian Yuan, Asif Padiyath, Allan F Simpao, and Fuchiang Rich Tsui.
- Tsui Laboratory, Children's Hospital of Philadelphia, 734 Schuylkill Ave, Philadelphia, PA 19146, United States; Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA 19104, United States.
- Resuscitation. 2024 Jan 1; 194: 110049110049.
Aim Of The ReviewThe primary aim of this systematic review was to investigate the most common electroencephalogram (EEG)-based machine learning (ML) model with the highest Area Under Receiver Operating Characteristic Curve (AUC) in two ML categories, conventional ML and Deep Neural Network (DNN), to predict the neurologic outcomes after cardiac arrest; the secondary aim was to investigate common EEG features applied to ML models.MethodsSystematic search of medical literature from PubMed and engineering literature from Compendex up to June 2, 2023. One reviewer screened studies that used EEG-based ML models to predict the neurologic outcomes after cardiac arrest. Four reviewers validated that the studies met selection criteria. Nine variables were manually extracted. The top-five common EEG features were calculated. We evaluated each study's risk of bias using the Quality in Prognosis Studies guideline.ResultsOut of 351 identified studies, 17 studies met the inclusion criteria. Random Forest (RF) (n = 7) was the most common ML model in the conventional ML category (n = 11), followed by Convolutional Neural Network (CNN) (n = 4) in the DNN category (n = 6). The AUCs for RF ranged between 0.8 and 0.97, while CNN had AUCs between 0.7 and 0.92. The top-three commonly used EEG features were band power (n = 12), Shannon's Entropy (n = 11), burst-suppression ratio (n = 9).ConclusionsRF and CNN were the two most common ML models with the highest AUCs for predicting the neurologic outcomes after cardiac arrest. Using a multimodal model that combines EEG features and electronic health record data may further improve prognostic performance.Copyright © 2023 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.