• Burns · Mar 2024

    The biomarkers associated with epithelial-mesenchymal transition in human keloids.

    • Zi-Kai Qiu, Elan Yang, Nan-Ze Yu, Ming-Zi Zhang, Wen-Chao Zhang, Lou-Bin Si, and Xiao-Jun Wang.
    • Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
    • Burns. 2024 Mar 1; 50 (2): 474487474-487.

    IntroductionA keloid is a type of benign fibrotic disease with similar features to malignancies, including anti-apoptosis, over-proliferation, and invasion. Epithelial-mesenchymal transition (EMT) is a crucial mechanism that regulates the metastatic behavior of tumors. Thus, identifying EMT biomarkers is paramount in comprehensively understanding keloid pathogenesis.MethodsTo identify the differentially expressed genes (DEGs) GSE92566 dataset, with 3 normal skin and 4 keloid tissues, was downloaded from GEO databases to identify the differentially expressed genes (DEGs). Further, EMT-related genes were downloaded from dbEMT 2.0 databases and intersected with GSE92566 DEGs to identify EMT-related-DEGs (ERDEGs). Subsequently, the ERDEGs were used for GO, KEGG, gene set enrichment analysis (GSEA), protein-protein interaction (PPI), and miRNAs-mRNAs network analysis. To predict small molecules for EMT inhibition, the ERDEGs were imported to cMAP databases, whereas hub genes were imported to DGidb databases. Finally, we carried out qRT-PCR and in vitro experiments to validate our findings.ResultsA total of 122 ERDEGs were identified, including 59 upregulated and 63 down-regulated genes. Moreover, enrichment analysis revealed that focal adhesion, AMPK signal pathway, Wnt signal pathway, and EMT biological process were significantly enriched. STRING databases and Cytoscape software were used to construct the PPI network and EMT-related hub genes. Further, 3 modules were explored from the PPI network using the Molecular Complex Detection (MCODE) plugin. In the Cytohubba plugin, 10 hub genes were explored, including FN1, EGF, SOX9, CDH2, PROM1, EPCAM, KRT19, ITGB1, CD24, and KRT18. These genes were then enriched for the focal adhesion pathway. We constructed a microRNA (miRNA)-mRNA network, which predicted hsa-miR-155-5p (8 edges), hsa-miR-124-3p (7 edges), hsa-miR-145-5p (5 edges), hsa-miR-20a-5p (5 edges) and hsa-let-7b-5p (4 edges) as the most connected miRNAs regulating EMT. Based on the ERDEGs and 10 hub genes mentioned above, ribavirin demonstrated high drug-targeting relevance. Subsequently, qRT-PCR confirmed that the expression of FN1, ITGB1, CDH2, and EPCAM corroborated with previous findings. qRT-PCR also showed that the expression levels of hsa-miR-124-3p and hsa-miR-145-5p were significantly lower in keloids and hsa-miR-155-5p was upregulated in keloids. Finally, by treating human keloid fibroblasts (HKFs) with ribavirin in vitro, we confirmed that ribavirin could inhibit HKFs proliferation and EMT.ConclusionIn summary, this work provides novel EMT biomarkers in keloids and predicts new small target molecules for keloid therapy. Our findings improve the understanding of keloid pathogenesis, providing new treatment options.Copyright © 2023. Published by Elsevier Ltd.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.