• Eur. J. Intern. Med. · Mar 2024

    Meta Analysis

    Early prediction of ventilator-associated pneumonia with machine learning models: A systematic review and meta-analysis of prediction model performance✰.

    • Tuomas Frondelius, Irina Atkova, Jouko Miettunen, Jordi Rello, Gillian Vesty, Han Shi Jocelyn Chew, and Miia Jansson.
    • Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
    • Eur. J. Intern. Med. 2024 Mar 1; 121: 768776-87.

    BackgroundMachine learning-based prediction models can catalog, classify, and correlate large amounts of multimodal data to aid clinicians at diagnostic, prognostic, and therapeutic levels. Early prediction of ventilator-associated pneumonia (VAP) may accelerate the diagnosis and guide preventive interventions. The performance of a variety of machine learning-based prediction models were analyzed among adults undergoing invasive mechanical ventilation.MethodsThis systematic review and meta-analysis was conducted in accordance with the Cochrane Collaboration. Machine learning-based prediction models were identified from a search of nine multi-disciplinary databases. Two authors independently selected and extracted data using predefined criteria and data extraction forms. The predictive performance, the interpretability, the technological readiness level, and the risk of bias of the included studies were evaluated.ResultsFinal analysis included 10 static prediction models using supervised learning. The pooled area under the receiver operating characteristics curve, sensitivity, and specificity for VAP were 0.88 (95 % CI 0.82-0.94, I2 98.4 %), 0.72 (95 % CI 0.45-0.98, I2 97.4 %) and 0.90 (95 % CI 0.85-0.94, I2 97.9 %), respectively. All included studies had either a high or unclear risk of bias without significant improvements in applicability. The care-related risk factors for the best performing models were the duration of mechanical ventilation, the length of ICU stay, blood transfusion, nutrition strategy, and the presence of antibiotics.ConclusionA variety of the prediction models, prediction intervals, and prediction windows were identified to facilitate timely diagnosis. In addition, care-related risk factors susceptible for preventive interventions were identified. In future, there is a need for dynamic machine learning models using time-depended predictors in conjunction with feature importance of the models to predict real-time risk of VAP and related outcomes to optimize bundled care.Copyright © 2023 The Author(s). Published by Elsevier B.V. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…