-
Wien. Klin. Wochenschr. · Jun 2024
Construction of a prognostic risk model for Stomach adenocarcinoma based on endoplasmic reticulum stress genes.
- Xi Li and Yuehua Lei.
- Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China.
- Wien. Klin. Wochenschr. 2024 Jun 1; 136 (11-12): 319330319-330.
ObjectiveStomach adenocarcinoma (STAD) is caused by malignant transformation of gastric glandular cells and is characterized by a high incidence rate and a poor prognosis. This study was designed to establish a prognostic risk model for STAD according to endoplasmic reticulum (ER) stress feature genes as cancer cells are susceptible to ER stress.MethodsThe TCGA-STAD dataset was downloaded to screen differentially expressed genes (DEGs). By intersecting DEGs with ER stress genes retrieved from GeneCards, ER stress-related DEGs in STAD were obtained. Kmeans cluster analysis of STAD subtypes and Single sample gene set enrichment analysis (ssGSEA) analysis of immune infiltration were performed. Cox regression analysis was utilized to construct a risk prognostic model. Samples were split into high-risk and low-risk groups according to the median risk score. Survival analysis and Receiver Operating Characteristic (ROC) curves were conducted to assess the validity of the model. Gene set enrichment analysis (GSEA) was performed to investigate differential pathways in the two risk groups. Cox analysis was performed to verify the independence of the risk model, and a nomogram was generated.ResultsA total of 162 ER stress-related DEGs in STAD were identified by bioinformatics analysis. Kmeans cluster analysis showed that STAD was divided into 3 subgroups. The ssGSEA showed that the levels of immune infiltration in subgroups 2 and 3 were significantly higher than subgroup 1. With 12 prognostic genes (MATN3, ATP2A1, NOX4, AQP11, HP, CAV1, STARD3, FKBP10, EGF, F2, SERPINE1, CNGA3) selected from ER stress-related DEGs using Cox regression analysis, we then constructed a prognostic model. Kaplan-Meier (K‑M) survival curves and ROC curves showed good prediction performance of the model. Significant enrichment of genes in the high-risk group was found in extracellular matrix (ECM) receptor interaction. Cox regression analysis combined with clinical factors showed that the risk model could be used as an independent prognostic factor. The prediction correction curve showed that the good prediction ability of the nomogram.ConclusionThe STAD could be divided into three subgroups, and the 12-gene model constructed by ER stress signatures had a good prognostic performance for STAD patients.© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.