-
Critical care medicine · Mar 2016
Comparative StudyInotropic Effects of Experimental Hyperthermia and Hypothermia on Left Ventricular Function in Pigs-Comparison With Dobutamine.
- Alessio Alogna, Martin Manninger, Michael Schwarzl, Birgit Zirngast, Paul Steendijk, Jochen Verderber, David Zweiker, Heinrich Maechler, Burkert M Pieske, and Heiner Post.
- 1Department of Cardiology, Medical University of Graz, Graz, Austria.2Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf, Hamburg, Germany.3Department of Cardiothoracic Surgery, Medical University of Graz, Graz, Austria.4Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.5Department of Cardiology, Charité Berlin Campus Virchow, Berlin, Germany.
- Crit. Care Med. 2016 Mar 1; 44 (3): e158-67.
ObjectivesThe results from the recent Targeted Temperature Management trial raised the question whether cooling or merely the avoidance of fever mediates better neurologic outcome in resuscitated patients. As temperature per se is a major determinant of cardiac function, we characterized the effects of hyperthermia (40.5°C), normothermia (38.0°C), and mild hypothermia (33.0°C) on left ventricular contractile function in healthy pigs and compared them with dobutamine infusion.DesignAnimal study.SettingLarge animal facility, Medical University of Graz, Graz, Austria.SubjectsNine anesthetized and mechanically ventilated closed-chest Landrace pigs (67 ± 2 kg).InterventionsCore body temperature was controlled using an intravascular device. At each temperature step, IV dobutamine was titrated to double maximum left ventricular dP/dt (1.8 ± 0.1 µg/kg/min at normothermia). Left ventricular pressure-volume relationships were assessed during short aortic occlusions. Left ventricular contractility was assessed by the calculated left ventricular end-systolic volume at an end-systolic left ventricular pressure of 100 mm Hg.Measurements And Main ResultsHeart rate (98 ± 4 vs 89 ± 4 vs 65 ± 2 beats/min; all p < 0.05) and cardiac output (6.7 ± 0.3 vs 6.1 ± 0.3 vs 4.4 ± 0.2 L/min) decreased with cooling from hyperthermia to normothermia and mild hypothermia, whereas left ventricular contractility increased (left ventricular end-systolic volume at a pressure of 100 mm Hg: 74 ± 5 mL at hyperthermia, 52 ± 4 mL at normothermia, and 41 ± 3 mL at mild hypothermia; all p < 0.05). The effect of cooling on left ventricular end-systolic volume at a pressure of 100 mm Hg (hyperthermia to normothermia: -28% ± 3% and normothermia to mild hypothermia: -20% ± 5%) was of comparable effect size as dobutamine at a given temperature (hyperthermia: -28% ± 4%, normothermia: -27% ± 6%, and mild hypothermia: -27% ± 9%).ConclusionsCooling from hyperthermia to normothermia and from normothermia to mild hypothermia increased left ventricular contractility to a similar degree as a significant dose of dobutamine in the normal porcine heart. These data indicate that cooling can reduce the need for positive inotropes and that lower rather than higher temperatures are appropriate for the resuscitated failing heart.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.