• The lancet oncology · Jan 2024

    Meta Analysis

    Treatment-related adverse events, including fatal toxicities, in patients with solid tumours receiving neoadjuvant and adjuvant immune checkpoint blockade: a systematic review and meta-analysis of randomised controlled trials.

    • Yu Fujiwara, Nobuyuki Horita, Elio Adib, Susu Zhou, Amin H Nassar, AsadZain Ul AbideenZUADepartment of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA., Alessio Cortellini, and Abdul Rafeh Naqash.
    • Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, USA; Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
    • Lancet Oncol. 2024 Jan 1; 25 (1): 627562-75.

    BackgroundIncorporating immune checkpoint blockade into perioperative cancer therapy has improved clinical outcomes. However, the safety of immune checkpoint blockade needs better evaluation, given the chances of more prolonged disease-free survival. We aimed to assess how adding immune checkpoint blockade to perioperative therapy affects treatment-related adverse events.MethodsFor this systematic review and meta-analysis, we searched PubMed/MEDLINE, Embase, Web of Science, and the Cochrane Library from database inception until Aug 8, 2023, for randomised controlled trials that assessed the addition of immune checkpoint blockade to neoadjuvant or adjuvant therapy for cancer, reported treatment-related deaths, and had a design in which the experimental group assessed immune checkpoint blockade in combination with the therapy used in the control group. Meta-analysis was done to pool odds ratios (ORs) of treatment-related deaths, any grade and grade 3-4 treatment-related adverse events, serious adverse events, and adverse events leading to treatment discontinuation. The protocol is registered with PROSPERO, CRD42022343741.Findings28 randomised controlled trials with 16 976 patients were included. The addition of immune checkpoint blockade was not significantly associated with increased treatment-related deaths (OR 1·76, 95% CI 0·95-3·25; p=0·073), consistent across immune checkpoint blockade subtype (I2=0%). 40 fatal toxicities were identified across 9864 patients treated with immune checkpoint blockade, with pneumonitis being the most common (six [15·0%]); 13 fatal toxicities occurred among 7112 patients who were not treated with immune checkpoint blockade. The addition of immune checkpoint blockade increased the incidence of grade 3-4 treatment-related adverse events (OR 2·73, 95% CI 1·98-3·76; p<0·0001), adverse events leading to treatment discontinuation (3·67, 2·45-5·51; p<0·0001), and treatment-related adverse events of any grade (2·60 [1·88-3·61], p<0·0001). The immune checkpoint blockade versus placebo design primarily used as adjuvant therapy was associated with increased incidence of treatment-related deaths (4·02, 1·04-15·63; p=0·044) and grade 3-4 adverse events (5·31, 3·08-9·15; p<0·0001), whereas the addition of immune checkpoint blockade in the neoadjuvant setting was not associated with increased incidence of treatment-related death (1·11, 95% CI 0·38-3·29; p=0·84) or grade 3-4 adverse events (1·17, 0·90-1·51; p=0·23).InterpretationThe addition of immune checkpoint blockade to perioperative therapy was associated with an increase in grade 3-4 treatment-related adverse events and adverse events leading to treatment discontinuation. These findings provide safety insights for further clinical trials assessing neoadjuvant or adjuvant immune checkpoint blockade therapy. Clinicians should closely monitor patients for treatment-related adverse events to prevent treatment discontinuations and morbidity from these therapies in earlier-stage settings.FundingNone.Copyright © 2024 Elsevier Ltd. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…