• World Neurosurg · Feb 2024

    Personalized prognosis with machine learning models for predicting in-hospital outcomes following intracranial meningioma resections.

    • Mert Karabacak, Pemla Jagtiani, Raj K Shrivastava, and Konstantinos Margetis.
    • Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA.
    • World Neurosurg. 2024 Feb 1; 182: e210e230e210-e230.

    BackgroundMeningiomas display diverse biological traits and clinical behaviors, complicating patient outcome prediction. This heterogeneity, along with varying prognoses, underscores the need for a precise, personalized evaluation of postoperative outcomes.MethodsData from the American College of Surgeons National Surgical Quality Improvement Program database identified patients who underwent intracranial meningioma resections from 2014 to 2020. We focused on 5 outcomes: prolonged LOS, nonhome discharges, 30-day readmissions, unplanned reoperations, and major complications. Six machine learning algorithms, including TabPFN, TabNet, XGBoost, LightGBM, Random Forest, and Logistic Regression, coupled with the Optuna optimization library for hyperparameter tuning, were tested. Models with the highest area under the receiver operating characteristic (AUROC) values were included in the web application. SHapley Additive exPlanations were used to evaluate the importance of predictor variables.ResultsOur analysis included 7000 patients. Of these patients, 1658 (23.7%) had prolonged LOS, 1266 (18.1%) had nonhome discharges, 573 (8.2%) had 30-day readmission, 253 (3.6%) had unplanned reoperation, and 888 (12.7%) had major complications. Performance evaluation indicated that the top-performing models for each outcome were the models built with LightGBM and Random Forest algorithms. The LightGBM models yielded AUROCs of 0.842 and 0.846 in predicting prolonged LOS and nonhome discharges, respectively. The Random Forest models yielded AUROCs of 0.717, 0.76, and 0.805 in predicting 30-day readmissions, unplanned reoperations, and major complications, respectively.ConclusionsThe study successfully demonstrated the potential of machine learning models in predicting short-term adverse postoperative outcomes after meningioma resections. This approach represents a significant step forward in personalizing the information provided to meningioma patients.Copyright © 2023. Published by Elsevier Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.