• Ir J Med Sci · Jun 2024

    Dermatological disease prediction and diagnosis system using deep learning.

    • Neda Fatima, Syed Afzal Murtaza Rizvi, and Major Syed Bilal Abbas Rizvi.
    • Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India. neda.9206@gmail.com.
    • Ir J Med Sci. 2024 Jun 1; 193 (3): 129513031295-1303.

    AbstractThe prevalence of skin illnesses is higher than that of other diseases. Fungal infection, bacteria, allergies, viruses, genetic factors, and environmental factors are among important causative factors that have continuously escalated the degree and incidence of skin diseases. Medical technology based on lasers and photonics has made it possible to identify skin illnesses considerably more rapidly and correctly. However, the cost of such a diagnosis is currently limited and prohibitively high and restricted to developed areas. The present paper develops a holistic, critical, and important skin disease prediction system that utilizes machine learning and deep learning algorithms to accurately identify up to 20 different skin diseases with a high F1 score and efficiency. Deep learning algorithms like Xception, Inception-v3, Resnet50, DenseNet121, and Inception-ResNet-v2 were employed to accurately classify diseases based on the images. The training and testing have been performed on an enlarged dataset, and classification was performed for 20 diseases. The algorithm developed was free from any inherent bias and treated all classes equally. The present model, which was trained using the Xception algorithm, is highly efficient and accurate for 20 different skin conditions, with a dataset of over 10,000 photos. The developed system was able to classify 20 different dermatological diseases with high accuracy and precision.© 2023. The Author(s), under exclusive licence to Royal Academy of Medicine in Ireland.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.