• Shock · Feb 2024

    Altered profiles of extracellular mitochondrial DNA in immunoparalyzed pediatric patients after thermal injury.

    • Laura H Tetri, Julia A Penatzer, Kaleb B Tsegay, Daniel S Tawfik, Shelby Burk, Ivan Lopez, Rajan K Thakkar, and Bereketeab Haileselassie.
    • Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.
    • Shock. 2024 Feb 1; 61 (2): 223228223-228.

    AbstractBackground: Thermal injury is a major cause of morbidity and mortality in the pediatric population worldwide with secondary infection being the most common acute complication. Suppression of innate and adaptive immune function is predictive of infection in pediatric burn patients, but little is known about the mechanisms causing these effects. Circulating mitochondrial DNA (mtDNA), which induces a proinflammatory signal, has been described in multiple disease states but has not been studied in pediatric burn injuries. This study examined the quantity of circulating mtDNA and mtDNA mutations in immunocompetent (IC) and immunoparalyzed (IP) pediatric burn patients. Methods: Circulating DNA was isolated from plasma of pediatric burn patients treated at Nationwide Children's Hospital Burn Center at early (1-3 days) and late (4-7 days) time points postinjury. These patients were categorized as IP or IC based on previously established immune function testing and secondary infection. Three mitochondrial genes, D loop, ND1, and ND4, were quantified by multiplexed qPCR to assess both mtDNA quantity and mutation load. Results: At the early time point, there were no differences in plasma mtDNA quantity; however, IC patients had a progressive increase in mtDNA over time when compared with IP patients (change in ND1 copy number over time 3,880 vs. 87 copies/day, P = 0.0004). Conversely, the IP group had an increase in mtDNA mutation burden over time. Conclusion: IC patients experienced a significant increase in circulating mtDNA quantity over time, demonstrating an association between increased mtDNA release and proinflammatory phenotype in the burn patients. IP patients had significant increases in mtDNA mutation load likely representative of degree of oxidative damage. Together, these data provide further insight into the inflammatory and immunological mechanisms after pediatric thermal injury.Copyright © 2023 by the Shock Society.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…