• Neurosurgery · Dec 2023

    Challenging Cortical Explorations in Difficult-to-Localize Seizures: The Rationale and Usefulness of Perisylvian Paralimbic Explorations With Orthogonal Stereoelectroencephalography Depth Electrodes.

    • Thandar Aung, Arka Mallela, Jonathan Ho, Lilly W Tang, Hussam Abou-Al-Shaar, and Gonzalez MartinezJorgeJUniversity of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.Department of Neurological Surgery, University of Pittsburgh Medical Cen.
    • University of Pittsburgh Comprehensive Epilepsy Center (UPCEC), Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
    • Neurosurgery. 2023 Dec 4.

    Background And ObjectiveStereoelectroencephalography (SEEG) is an invasive monitoring method designed to define and localize the epileptogenic zone (EZ) and explore the putative network responsible for the electroclinical seizures using anatomo-functional-electroclinical correlations. When indicated by semiology in selected patients, exploration of both limbic and paralimbic (PL) regions is indispensable. However, the PL cortex is located in deep and highly vascularized areas in proximity to the anterior Sylvian fissure and middle cerebral artery branches. Thus, those explorations are considered surgically challenging because of the multilobar location and fear of hemorrhagic events. Here, we discuss and illustrate the rationale and SEEG methodology approach in usefulness of exploring the PL regions using standard orthogonal SEEG depth electrode trajectories with the Talariach reference system.MethodsWe retrospectively studied PL exploration from a cohort of 71 consecutive SEEG procedures from Nov 2019 to Nov 2022 and identified 31 patients who underwent PL trajectories.ResultsIn 31 patients, there were 32 SEEG trajectories, and no major complications were observed. PL electrodes were consistently implanted in the C10/D10 coordinates of the Talariach reference coordinates. The most common confirmed EZ in our cohort was mesio-temporal (45%), followed by temporo-perisylvian regions (16%), ventromedial frontal (13%), and mesio-lateral temporal regions (13%). The PL contacts were involved in the EZ in 10 patients (32%). Of 31 patients, 25 underwent resective surgery, and 19 obtained Engel 1 outcome with a mean follow-up of 25 months (range 12-41 months) after surgery.ConclusionThe orthogonal perisylvian PL trajectories are feasible and useful in sampling multiple PL regions with single-electrode trajectories. In patients with perisylvian seizures, sampling PL structures may contribute to an improved understanding of seizure propagation and the optimal anatomic demarcation of the EZs in this surgically challenging region.Copyright © Congress of Neurological Surgeons 2023. All rights reserved.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.