-
- Yonglin Zhu, Guannan Ma, Wei Ren, Zhenyu Hu, Ling Zhou, Xin Zhang, Na Zhao, Mingding Zhang, Lei Yan, Qian Yu, Xuetong Liu, and Jichao Chen.
- Aerospace Center Hospital, Beijing, China.
- Medicine (Baltimore). 2023 Dec 1; 102 (48): e36320e36320.
AbstractComplex microbial ecosystems in both gastrointestinal and respiratory systems have been found to have a significant impact on human health. Growing evidence has demonstrated that intestinal dysbiosis can increase vulnerability to pulmonary infections. However, changes in the composition and activity of the intestinal flora after probiotic supplementation may alter the disease state of the host. The effects of probiotics on the improvement of diseases, such as severe pneumonia (SP), in intensive care units (ICUs) remain controversial. We retrospectively included 88 patients diagnosed with severe pneumonia between April 2021 and June 2022. The patients were divided into 2 groups: a probiotic group (n = 40) and a control group (n = 48). In addition, changes in CRP, PCT, WBC, IL-6, Clostridium difficile toxin, and PSI pneumonia scores were assessed. Changes in the gut microbiome of the patients were assessed using amplicon sequencing. Compared to the control group, a significant reduction in the incidence of length of hospital stay was observed in the probiotic group, but there were no significant differences in the mortality rate, duration of fever, diarrhea, and constipation. After probiotic treatment, CRP, PCT, WBC, and PSI score were significantly lower than before, and better clinical efficacy was achieved in the probiotic group for the duration of antibiotic therapy. Gut microbiota analysis revealed that the abundance of opportunistic pathogens (e.g., Massilia) increased remarkably at the genus level in the control group, and a significant increase in Erysipelotrichaceae_ge was observed after probiotic intervention. The control group showed an increase in opportunistic pathogens (Citrobacter, Massilia) during the antibiotic treatment. Probiotics interventions inhibit the growth of opportunistic pathogens. In addition, we found that the population of butyrate-producing bacteria (e.g., Ruminococcaceae UCG-005) increased following probiotic treatment.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.