-
- Ying Wang, Xueying Chen, Yan Wang, Hong Zhong, Liqin Liu, and Yang Ye.
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China.
- Medicine (Baltimore). 2023 Dec 1; 102 (48): e36349e36349.
AbstractThis study aimed to investigate the active composition and mechanism of the Shuganfang (SGF) in treating drug-induced liver injury (DILI) using network pharmacology and molecular docking. The potential active ingredients and targets of SGF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) database. DILI-related targets were queried from various databases including GEO, GeneCards, OMIM, NCBI, and DisGeNET. The STRING database was used to establish a protein-protein interaction (PPI) network. DAVID was utilized for conducting gene ontology (GO) function enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The data visualization and analysis of herb-ingredient-target and disease-pathway-target-ingredient networks were conducted using Cytoscape software (version 3.7.2). PyMoL and AutoDock software was used to select the best binding target for molecular docking. A total of 177 active ingredients,126 targets and 10112 disease targets were obtained, including 122 intersection targets. The identified potential active ingredients consisted of quercetin, kaempferol, luteolin, tanshinone IIa, nobiletin, isorhamnetin, beta-sitosterol and naringenin. The core targets implicated in the study were IL6, estrogen receptor 1 (ESR1), hypoxia-inducible factor alpha subunit 1 (HIF1A), MYC and vascular endothelial growth factor A (VEGFA). KEGG analysis revealed that the treatment of DILI with SGF mainly acted through apoptosis, the PI3K-Akt signaling pathway, and the tumor necrosis factor (TNF) signaling pathway. Furthermore, the binding affinities between the potential ingredients and the core targets were subsequently confirmed through molecular docking experiments. The findings indicated that the docking outcomes remained consistent and demonstrated a favorable capacity for binding. SGF exerts a therapeutic effect on DILI through multiple active ingredients, multiple targets and multiple pathways. Our findings contribute to a positive investigation and establish a theoretical basis for further extensive exploration of SGF as a potential treatment for DILI in future research.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.