• Medicine · Dec 2023

    Review

    Bioinformatics analysis of ceRNA network of autophagy-related genes in pediatric asthma.

    • Hao Zhu, Jiao Shi, and Wen Li.
    • Department of Pediatrics, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, China.
    • Medicine (Baltimore). 2023 Dec 1; 102 (48): e36343e36343.

    AbstractThe molecular underpinnings of pediatric asthma present avenues for targeted therapies. A deeper exploration into the significance of differentially expressed autophagy-related genes (DE-ARGs) and their interactions with the long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA network may offer insights into the pathogenesis of pediatric asthma. DE-ARGs were retrieved from the Gene Expression Omnibus and the Human Autophagy Database. These DE-ARGs were subjected to comprehensive analyses, including Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, Gene Set Enrichment Analysis, and protein-protein interaction networks. The identified DE-ARGs were further verified for core gene expression. The miRDB and ENCORI databases were used for inverse miRNA predictions. Furthermore, miRNA-lncRNA interactions were predicted using LncBase and ENCORI platforms. Following the exclusion of lncRNAs exclusively localized in the nucleus and extracellular space, a competitive endogenous RNA (ceRNA) network was established and subsequently subjected to detailed analysis. The mRNA expression patterns in the ceRNA network were validated using quantitative real-time PCR. In total, 31 DE-ARGs were obtained, of which 29 were up-regulated and 2 were down-regulated. Notably, the autophagy, regulation of apoptotic signaling pathways, interferon-α/β signaling, interferon γ signaling, autophagy-animal, and apoptosis pathways were predominantly enriched in pediatric asthma. Five hub genes (VEGFA, CFLAR, RELA, FAS, and ATF6) were further analyzed using the Gene Expression Omnibus dataset to verify their expression patterns and diagnostic efficacy. Four hub genes (VEGFA, CFLAR, RELA, and FAS) were obtained. Finally, a ceRNA network of 4 mRNAs (VEGFA, CFLAR, RELA, and FAS), 3 miRNAs (hsa-miR-320b, hsa-miR-22-3p, and hsa-miR-625-5p), and 35 lncRNAs was constructed by integrating data from literature review and analyzing the predicted miRNAs and lncRNAs. Moreover, the quantitative real-time PCR data revealed a pronounced upregulation of Fas cell surface death receptor. The identification of 4 DE-ARGs, especially Fas cell surface death receptor, has shed light on their potential pivotal role in the pathogenesis of pediatric asthma. The established ceRNA network provides novel insights into the autophagy mechanism in asthma and suggests promising avenues for the development of potential therapeutic strategies.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.