• Emergency radiology · Feb 2007

    Comparative Study

    Whole body 16-row multislice CT in emergency room: effects of different protocols on scanning time, image quality and radiation exposure.

    • Ezio Fanucci, Valeria Fiaschetti, Anna Rotili, Roberto Floris, and Giovanni Simonetti.
    • Department of Radiology, Tor Vergata University, Policlinico di Tor Vergata, Viale Oxford 81, 00133 Rome, Italy.
    • Emerg Radiol. 2007 Feb 1;13(5):251-7.

    AbstractThe objective of this study was to compare two different scanning protocols in patients suspected to have multiple trauma using multidetector 16-row computed tomography (CT) to better define scanning time, imaging quality and radiation exposure. Forty-six patients, between March 2004 and March 2005, with suspected multiple trauma (cerebral, spine, chest, abdominal and pelvis) were evaluated with two different protocols: Protocol "A" 26 patients; Protocol "B" 20 patients. Protocol A consists of a single-pass continuous whole-body acquisition (from vertex to pubic symphysis), whereas Protocol B of conventional segmented acquisition with scanning of body segments individually. Both protocols were performed using a multidetector 16-rows CT (Light-Speed 16, General Electric Medical System, Milwaukee, WI, USA) with the same technical factors. Radiation dose was evaluated in two ways: computer tomography dose index (CTDI) = dose measured in central and peripheral region of the subjects as a direct result of a CT section acquisition of T millimeters thick (independent from the two protocols) and dose length product (DLP) = total dose deposited over the length of the acquisition (dependent from the two protocols). Image quality was rated according to the following scores: 1, excellent; 2, good; 3, satisfactory; 4, moderate and 5, poor. The results were compared using Wilcoxon's test to identify significant difference in terms of image quality, scanning time, radiation exposure and presence of artifacts, assuming significance at a p value of <0.05. In the single-pass scanning, DLP was 2.671 mGy x cm and a total scan time of 35 s. In whole-body protocols, we have seen artifacts due to arm adduction in thorax and less image quality in brain. In the conventional segmented study, DLP was 3.217 mGy x cm and a total scan time of 65 s; this protocol offered less extraction capabilities of off-axial on focused images of the entire spine, aorta, facial bones or hip without rescanning. Protocol A revealed a significant decrease in scan time (35 vs 65 min, p < 0.05), time in the CT examination room (21.7 vs 31.6 min.; p < 0.05), and final image analysis (83.7 vs 102.9 min; p < 0.05) and radiation dose compared to protocol B (p < 0.05). No significant difference was found for patient transport time, image reconstruction time and imaging quality. Reconstruction and isotropic reformation of axial image acquired by whole-body, single-pass protocols due to entire spine evaluation, aortic and splanchnic CT angiography eliminate additional studies. The whole-body, single-pass protocols, compared with segmented acquisitions protocols, resulted in a reduced total radiation dose without relevant loss of diagnostic image information.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.