• Annals of medicine · Jan 2023

    Review

    AI-based digital image dietary assessment methods compared to humans and ground truth: a systematic review.

    • Eleanor Shonkoff, Kelly Copeland Cara, Xuechen Anna Pei, Mei Chung, Shreyas Kamath, Karen Panetta, and Erin Hennessy.
    • School of Health Sciences, Merrimack College, North Andover, MA, USA.
    • Ann. Med. 2023 Jan 1; 55 (2): 22734972273497.

    ObjectiveHuman error estimating food intake is a major source of bias in nutrition research. Artificial intelligence (AI) methods may reduce bias, but the overall accuracy of AI estimates is unknown. This study was a systematic review of peer-reviewed journal articles comparing fully automated AI-based (e.g. deep learning) methods of dietary assessment from digital images to human assessors and ground truth (e.g. doubly labelled water).Materials And MethodsLiterature was searched through May 2023 in four electronic databases plus reference mining. Eligible articles reported AI estimated volume, energy, or nutrients. Independent investigators screened articles and extracted data. Potential sources of bias were documented in absence of an applicable risk of bias assessment tool.ResultsDatabase and hand searches identified 14,059 unique publications; fifty-two papers (studies) published from 2010 to 2023 were retained. For food detection and classification, 79% of papers used a convolutional neural network. Common ground truth sources were calculation using nutrient tables (51%) and weighed food (27%). Included papers varied widely in food image databases and results reported, so meta-analytic synthesis could not be conducted. Relative errors were extracted or calculated from 69% of papers. Average overall relative errors (AI vs. ground truth) ranged from 0.10% to 38.3% for calories and 0.09% to 33% for volume, suggesting similar performance. Ranges of relative error were lower when images had single/simple foods.ConclusionsRelative errors for volume and calorie estimations suggest that AI methods align with - and have the potential to exceed - accuracy of human estimations. However, variability in food image databases and results reported prevented meta-analytic synthesis. The field can advance by testing AI architectures on a limited number of large-scale food image and nutrition databases that the field determines to be adequate for training and testing and by reporting accuracy of at least absolute and relative error for volume or calorie estimations.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.