• Spine · Apr 2024

    The Role and Mechanism of Spinal NF-κB-CXCL1/CXCR2 in Rats with Nucleus Pulposus-induced Radicular Pain.

    • Fengjiao Gao, Ming Wei, Meiyue Wang, Yongting Yang, Xuan Duan, Lin Yang, and Laibao Sun.
    • Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
    • Spine. 2024 Apr 1; 49 (7): E87E99E87-E99.

    Study DesignExperimental study of the role and mechanism of spinal NFκB-CXCL1/CXCR2 in rats with nucleus pulposus-induced radicular pain.ObjectiveThis study investigated the role and mechanism of spinal NFκB-CXCL1/CXCR2 in autologous nucleus pulposus-induced pain behavior in rats and to clarify the involvement and regulation of spinal NFκB as an upstream molecule of CXCL1 in autologous nucleus pulposus-induced radicular pain in rats.Summary Of Background DataThe inflammatory response of nerve roots is an important mechanism for the occurrence of chronic pain. NFκB-CXCL1/CXCR2 pathway plays an important role in the development of radicular pain, but its regulatory mechanism in the model of radicular pain induced by autologous nucleus pulposus is still unclear.Materials And MethodsWe established a rat model of autologous medullary nucleus transplantation. We observed and recorded the changes in 50% mechanical withdrawal threshold and thermal withdrawal latency before and after the administration of CXCL1-neutralizing antibodies, CXCR2 inhibitor, and NFκB inhibitor in each group of rats and evaluated the expression of NFκB, CXCL1, and CXCR2 in the spinal dorsal horn using immunofluorescence and Western blot. To compare differences between groups in behavioral testing, analysis of variance was employed. Dunnett's method was used to compare differences at different time points within a group and between different groups at the same time point. A comparison of the relative concentration of protein, relative concentration of mRNA, and semiquantitative data from immunofluorescence staining was conducted utilizing one-way ANOVA and Dunnett's pairwise comparison.ResultsAutologous nucleus pulposus transplantation can induce radicular pain in rats and upregulate the expression of CXCL1, CXCR2, and NFκB in the spinal cord. CXCL1 is co-expressed with astrocytes, CXCR2 with neurons, and NFκB with both astrocytes and neurons. The application of CXCL1 neutralizing antibodies, CXCR2 inhibitors, and NFκB inhibitors can alleviate pain hypersensitivity induced by autologous nucleus pulposus transplantation in rats. Inhibitors of NFκB could downregulate the expression of CXCL1 and CXCR2.ConclusionsWe found that spinal NFκB is involved in NP-induced radicular pain in rats through the activation of CXCL1/CXCR2, enriching the mechanism of medullary-derived radicular pain and providing a possible new target and theoretical basis for the development of more effective anti-inflammatory and analgesic drugs for patients with chronic pain following LDH.Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…