• Bmc Med · Dec 2023

    Clinical prediction models and the multiverse of madness.

    • Richard D Riley, Alexander Pate, Paula Dhiman, Lucinda Archer, Glen P Martin, and Gary S Collins.
    • College of Medical and Dental Sciences, Institute of Applied Health Research, University of Birmingham, Birmingham, B15 2TT, UK. r.d.riley@bham.ac.uk.
    • Bmc Med. 2023 Dec 18; 21 (1): 502502.

    BackgroundEach year, thousands of clinical prediction models are developed to make predictions (e.g. estimated risk) to inform individual diagnosis and prognosis in healthcare. However, most are not reliable for use in clinical practice.Main BodyWe discuss how the creation of a prediction model (e.g. using regression or machine learning methods) is dependent on the sample and size of data used to develop it-were a different sample of the same size used from the same overarching population, the developed model could be very different even when the same model development methods are used. In other words, for each model created, there exists a multiverse of other potential models for that sample size and, crucially, an individual's predicted value (e.g. estimated risk) may vary greatly across this multiverse. The more an individual's prediction varies across the multiverse, the greater the instability. We show how small development datasets lead to more different models in the multiverse, often with vastly unstable individual predictions, and explain how this can be exposed by using bootstrapping and presenting instability plots. We recommend healthcare researchers seek to use large model development datasets to reduce instability concerns. This is especially important to ensure reliability across subgroups and improve model fairness in practice.ConclusionsInstability is concerning as an individual's predicted value is used to guide their counselling, resource prioritisation, and clinical decision making. If different samples lead to different models with very different predictions for the same individual, then this should cast doubt into using a particular model for that individual. Therefore, visualising, quantifying and reporting the instability in individual-level predictions is essential when proposing a new model.© 2023. The Author(s).

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…