• Medicina · Dec 2023

    Detection and Segmentation of Radiolucent Lesions in the Lower Jaw on Panoramic Radiographs Using Deep Neural Networks.

    • Mario Rašić, Mario Tropčić, Pjetra Karlović, Dragana Gabrić, Marko Subašić, and Predrag Knežević.
    • Clinic for Tumors, Clinical Hospital Center "Sisters of Mercy", Ilica 197, 10000 Zagreb, Croatia.
    • Medicina (Kaunas). 2023 Dec 9; 59 (12).

    AbstractBackground and Objectives: The purpose of this study was to develop and evaluate a deep learning model capable of autonomously detecting and segmenting radiolucent lesions in the lower jaw by utilizing You Only Look Once (YOLO) v8. Materials and Methods: This study involved the analysis of 226 lesions present in panoramic radiographs captured between 2013 and 2023 at the Clinical Hospital Dubrava and the School of Dental Medicine, University of Zagreb. Panoramic radiographs included radiolucent lesions such as radicular cysts, ameloblastomas, odontogenic keratocysts (OKC), dentigerous cysts and residual cysts. To enhance the database, we applied techniques such as translation, scaling, rotation, horizontal flipping and mosaic effects. We have employed the deep neural network to tackle our detection and segmentation objectives. Also, to improve our model's generalization capabilities, we conducted five-fold cross-validation. The assessment of the model's performance was carried out through metrics like Intersection over Union (IoU), precision, recall and mean average precision (mAP)@50 and mAP@50-95. Results: In the detection task, the precision, recall, mAP@50 and mAP@50-95 scores without augmentation were recorded at 91.8%, 57.1%, 75.8% and 47.3%, while, with augmentation, were 95.2%, 94.4%, 97.5% and 68.7%, respectively. Similarly, in the segmentation task, the precision, recall, mAP@50 and mAP@50-95 values achieved without augmentation were 76%, 75.5%, 75.1% and 48.3%, respectively. Augmentation techniques led to an improvement of these scores to 100%, 94.5%, 96.6% and 72.2%. Conclusions: Our study confirmed that the model developed using the advanced YOLOv8 has the remarkable capability to automatically detect and segment radiolucent lesions in the mandible. With its continual evolution and integration into various medical fields, the deep learning model holds the potential to revolutionize patient care.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…