• Medicine · Dec 2023

    Development and validation of an artificial intelligence algorithm for detecting vocal cords in video laryngoscopy.

    • Dae Kon Kim, Byeong Soo Kim, Yu Jin Kim, Sungwan Kim, Dan Yoon, Dong Keon Lee, Joo Jeong, and You Hwan Jo.
    • Department of Emergency Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
    • Medicine (Baltimore). 2023 Dec 22; 102 (51): e36761e36761.

    AbstractAirway procedures in life-threatening situations are vital for saving lives. Video laryngoscopy (VL) is commonly performed during endotracheal intubation (ETI) in the emergency department. Artificial intelligence (AI) is widely used in the medical field, particularly to detect anatomical structures. This study aimed to develop an AI algorithm that detects vocal cords from VL images acquired during emergent situations. This retrospective study used VL images acquired in the emergency department to facilitate the ETI. The vocal cord image was labeled with a ground-truth bounding box. The dataset was divided into training and validation datasets. The algorithm was developed from a training dataset using the YOLOv4 model. The performance of the algorithm was evaluated using a test set. The test set was further divided into specific environments during the ETI for clinical subgroup analysis. In total, 20,161 images from 84 patients were used in this study. A total of 10,287, 5766, and 4108 images were used for the model training, validation, and test sets, respectively. The developed algorithm achieved F1 score 0.906, sensitivity 0.963, and specificity 0.842 in the validation set. The performance in the test set was F1 score 0.808, sensitivity 0.823, and specificity 0.804. We developed and validated an AI algorithm to detect vocal cords in VL. This algorithm demonstrated a high performance. The algorithm can be used to determine the vocal cord to ensure safe ETI.Copyright © 2023 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.